
Event-Driven Packet Processing
Stephen Ibanez
Stanford University

Gianni Antichi
Queen Mary University of

London

Gordon Brebner
Xilinx Labs

Nick McKeown
Stanford University

ABSTRACT
The rise of programmable network devices and the P4 pro-
gramming language has sparked an interest in developing
new applications for packet processing data planes. Current
data-plane programming models allow developers to express
packet processing on a synchronous packet-by-packet basis,
motivated by the goal of line rate processing in feed-forward
pipelines. But some important data-plane operations do not
naturally fit into this programming model. Sometimes we
want to perform periodic tasks, or update the same state
variables multiple times, or base a decision on state sitting at
a different pipeline stage. While a P4-programmable device
might contain special features to handle these tasks, such
as packet generators and recirculation paths, there is cur-
rently no clean and consistent way to expose them to P4
programmers. We therefore propose a common, general way
to express event processing using the P4 language, beyond
just processing packet arrival and departure events. We be-
lieve that this more general notion of event processing can
be supported without sacrificing line rate packet processing
and we have developed a prototype event-driven architec-
ture on the NetFPGA SUME platform to serve as an initial
proof of concept.

ACM Reference Format:
Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick McK-
eown. 2019. Event-Driven Packet Processing. In The 18th ACM
Workshop on Hot Topics in Networks (HotNets ’19), November 13–
15, 2019, Princeton, NJ, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3365609.3365848

1 INTRODUCTION
Programmable network devices have been gaining signifi-
cant traction within the networking community as a result

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7020-2/19/11. . . $15.00
https://doi.org/10.1145/3365609.3365848

of their unique ability to deploy custom algorithms that op-
erate at line rate. There have already been many interesting
applications that take advantage of this new found ability
to program the data plane [6, 10, 12, 13, 18]. P4 has emerged
as the de facto language for programming the data plane.
P4 programs are designed to be compiled onto a class of
data-plane architectures called Protocol Independent Switch
Architecture (PISA) [2]. PISA architectures are composed
of programmable parsers, match-action pipelines, and de-
parsers and are designed to process packets at line rate. Each
instance of a PISA architecture exposes a certain data-plane
programming model to the P4 programmer who then works
within the confines of the provided programming model to
implement their custom processing logic. Every data-plane
programming model is driven by a set of data-plane events,
where a data-plane event is an architectural state change
that triggers processing in the programming model.
The simple PISA architecture introduced in [2] consists

of a single programmable parser, match-action pipeline, and
deparser connected in series. The P4 language consortium
recently defined a different PISA architecture called the
Portable Switch Architecture (PSA), which is depicted in Fig-
ure 1. The PSA consists of two P4 programmable pipelines,
one to process packets on ingress and one to process packets
on egress as they leave the device. Both of these architectures
are what we call baseline PISA architectures. A baseline PISA
architecture supports a programming model that exposes
synchronous packet-by-packet processing to the P4 program-
mer. That is, the programming model only allows developers
to define how to handle a small set of packet-related events,
usually ingress and egress packet events.
We observe that many data-plane algorithms do not nat-

urally fit into this synchronous packet-by-packet program-
ming model. Some applications need to execute logic inde-
pendently of packet arrivals and departures. For example,
HULA [14] is a load balancing application that must peri-
odically generate probe packets to measure link utilization.
When deployed on a baseline PISA architecture, these HULA
probe packets must be generated by either the control plane
or end hosts because the programming model provides no
means to perform periodic tasks or generate packets. Simi-
larly, the Count-Min Sketch (CMS) [5] is a commonly used
data-plane primitive that must be periodically reset. When
a CMS is used in a baseline PISA architecture, the control

133

https://doi.org/10.1145/3365609.3365848
https://doi.org/10.1145/3365609.3365848

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Stephen Ibanez et al.

plane must be responsible for performing the reset opera-
tion. This can lead to significant overhead for the control
plane, especially if the data structure must be frequently
reset. Other data-plane operations, such as measuring flow
rates or computing average queue occupancies, must com-
pute functions of a signal over a moving window of time.
While this type of operation is sometimes possible to imple-
ment using only packet events, it is often cumbersome and
challenging to do so. Furthermore, many data-plane appli-
cations can benefit from the ability to update algorithmic
state multiple times while processing a packet. For instance,
computing congestion signals such the number of buffered
flows, inherently require state updates both as packets are
enqueued and dequeued from the buffer.

In this paper we introduce event-driven PISA architectures,
which provide a programming model that explicitly exposes
a rich set data-plane events to the P4 programmer. As pack-
ets traverse the architecture, they generate events such as
buffer enqueue, dequeue, or overflow events, which are sub-
sequently handled by dedicated processing threads that share
state with the packet processing threads. Events may also
be generated independently of any packet processing logic,
such as based on a timer configuration, a link status change,
or a control-plane command. An event-driven programming
model allows a P4 programmer to express how each of the
individual data-plane events are handled. Event-driven PISA
architectures alleviate many of the key limitations of baseline
PISA architectures. In particular, they enable more interest-
ing stateful packet processing applications as they allow
data-plane programs to spawn threads that perform back-
ground maintenance of algorithmic state, as well as perform
periodic tasks such as generating packets.

The main contributions of this paper are:

• We propose a common, general way to express line
rate data-plane event processing beyond just packet
arrival and departure events.

• We identify a set of useful data-plane events that can
be used to implement a wide range of data-plane algo-
rithms.

• We identify classes of applications that will benefit
from the proposed programming model.

• We demonstrate feasibility of the approach at line rate
by architecting an event-driven architecture on the
NetFPGA SUME platform.

2 EVENT-DRIVEN PROGRAMMING
P4 programs are often compiled to run on a PISA pipeline
comprising multiple match+action stages. The baseline PISA
architecture only supports events that are triggered by packet
arrivals and departures. In this paper we will explore how

Figure 1: Simplified diagram of the portable switch
architecture (PSA), which consists of separate ingress
and egress pipelines to handle packet arrival and de-
parture events, respectively.

to enhance the baseline programming model to support a
richer set of data-plane events.
We started by examining a broad set of data-plane appli-

cations in order to identify a set of useful data-plane events.
Our list is shown in Table 1. The first three are packet events
(ingress, egress, and recirculated) and are commonly sup-
ported in the baseline programming model. The remaining
events, such as when a packet is enqueued or dequeued, a
buffer overflows or underflows, a timer expires, or a link
status changes, are sometimes available from the hardware,
but are not exposed by the programming model.

Our event-driven PISA programming model explicitly ex-
poses data-plane events to the P4 programmer by allowing
them to define custom event handling logic. A particular tar-
get device exposes the precise set of events that it supports
via the P4 architecture description file. This generalization
from packet events to data-plane events gives data-plane
programs much more flexibility, and if designed appropri-
ately, still allows packets to be processed at line rate. We
next describe how these events are exposed to data-plane
developers within our proposed event-driven programming
model.

Example Logical ArchitectureModel.We consider a sim-
ple event-driven architecture that only supports ingress
packet events, enqueue events, and dequeue events. Figure 2
depicts a block diagram of this logical architecture model.
Ingress packet events trigger processing in the ingress PISA
pipeline. Every time a packet is enqueued in the switch buffer,
the traffic manager extracts some metadata from the packet
and uses it to fire an enqueue event which then triggers the

Table 1: Set of useful data-plane events to support in
an event-driven packet processing architecture.

Data-Plane Events
Ingress Packet Buffer Overflow
Egress Packet Buffer Underflow

Recirculated Packet Timer Expiration
Generated Packet Control-Plane Triggered
Packet Transmitted Link Status Change
Buffer Enqueue User Event
Buffer Dequeue

134

Event-Driven Packet Processing HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Figure 2: A diagram of a logical event-driven data-
plane architecture. Each event triggers processing in
a separate logical pipeline.

logical enqueue pipeline. A similar procedure occurs for de-
queue events. Each of these pipelines have some notion of
local state as well as global shared state.

Writing Event-Driven Programs. Let us see how we can
write an event driven P4 program for our example archi-
tecture model. Our P4 program will monitor the buffer oc-
cupancy of each active flow. It will use this information to
identify microburst culprits: flows that contribute to a sud-
den, significant increase in buffer usage. As noted in [3],
this is very challenging to do on baseline PISA architectures
because the programming model does not allow state to
be updated both when packets are enqueued and dequeued
from the buffer. The authors needed to keep track of mul-
tiple, complex, stateful data structures to keep track of the
(approximate) queue occupancy in the egress pipeline. If in-
stead we use our event-driven programming model, we can
reduce the stateful requirements at least four-fold and can
perform the detection in the ingress pipeline before packets
are enqueued in the switch buffer.
To do this, our P4 target architecture will need to sup-

port events as well as a new type of extern. An extern is
an element whose functionality is not described in P4, and
provides an interface for P4 programs to interact with it.
This is the mechanism through which an architecture can
expose stateful operations to P4 programmers. Our target
event-driven architecture will support a new type of extern
called shared_register to allow event processing threads
to share state.
The user’s program microburst.p4 (shown below), in-

stantiates one of these new extern objects to track the buffer
occupancy on a per-flow basis (flowBufSize_reg). The
flowBufSize_reg should be allocated with enough entries
to track state for every flow that has at least one packet in
the buffer.1
When a packet arrives, the ingress logic computes the

packet’s flow ID by hashing the IP source and destination
1If needed, a count-min-sketch data structure can be used to reduce state
requirements even further.

addresses, and initializes the packet’s metadata so that it can
carry the enqueue and dequeue events through the pipeline.
Next, the ingress logic reads the flow’s buffer occupancy and
checks if it exceeds a pre-configured threshold to determine
if the flow is a microburst culprit. Upon successful detection
of a microburst culprit, the program may then decide to take
corrective action such as dropping the packet, lowering its
scheduling priority, or notifying a controller.
// microburst.p4
shared_register <bit <32>>(NUM_REGS) bufSize_reg;

// Ingress Packet Event Logic
control Ingress(/* hdrs and metadata */) {

bit <32> bufSize;
bit <32> flowID;
apply {

// compute flowID
hash(hdr.ip.src ++ hdr.ip.dst , flowID);
// initialize enq & deq metadata for this pkt
enq_meta.flowID = flowID;
enq_meta.pkt_len = meta.pkt_len;
deq_meta.flowID = flowID;
deq_meta.pkt_len = meta.pkt_len;
// read buffer occupancy of this flow
bufSize_reg.read(flowID , bufSize);
// detect microburst
if (bufSize > FLOW_THRESH) { /* microburst
culprit! */ }

}
}

The user also needs to implement event handling logic for
enqueue and dequeue events to update the per-flow buffer
occupancy state. The enqueue logic increments the appropri-
ate entry in the bufSize_reg by the length of the enqueued
packet, while the dequeue logic decrements this state by the
length of the packet that was just removed from the buffer.
Here we show how the enqueue event handling logic can be
implemented, the dequeue event handling logic being very
similar.
// Enqueue Event Logic
control Enqueue(inout enq_data_t meta) {

bit <32> bufSize;
apply {

// increment buffer occupancy of this flow
bufSize_reg.read(meta.flowID , bufSize);
bufSize = bufSize + meta.pkt_len;
bufSize_reg.write(meta.flowID , bufSize);

}
}

Perhaps the biggest benefit to the P4 programmer is that
event handling logic can now be expressed in separate threads
of execution with shared state. The issues surrounding such
state are considered in Section 4.

3 EVENT-DRIVEN APPLICATIONS
Table 2 summarizes five classes of applications that we be-
lieve will greatly benefit from event-driven programming:

CongestionAware Forwarding applications base their for-
warding decisions on recent congestion signals. We can de-
rive congestion signals, such as (per-active-flow) queue oc-
cupancy, link utilization, and packet loss from the enqueue,

135

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Stephen Ibanez et al.

dequeue, and buffer overflow events. This allows for variants
of ECN marking, with packets carrying multiple bits rather
than just one, to communicate queue occupancy along the
path, or just the maximum queue occupancy at the bottle-
neck. If the programmer uses timer events as well, congestion
signals can be periodically transmitted along various paths
in the network, as is the case in HULA [14] or can be used in
the ingress pipeline to make priority forwarding decisions,
as in NDP [8].

NetworkManagement encompasses a broad range of tasks
typically handled by the network control plane. For example,
re-routing traffic when links fail usually requires the control
plane to detect the failure, re-route the affected flows, and
potentially migrate data-plane state from a flow’s old path
to its new one. By introducing link status change events,
the data plane can immediately respond to link failures, au-
tonomously re-route affected flows and migrate data-plane
state. This makes it much easier to implement Fast Re-Route
(FRR) [25] and swing-state [17]. Furthermore, timer events
allow data-planes to reliably and quickly probe and detect
failed neighbors and tunnels.

Network Monitoring with extremely fine-grain measure-
mentsmade possible by In-bandNetwork Telemetry (INT) [20]
is becoming increasingly popular. One challenge with INT
is the potentially huge volume of measurement data, which
might overwhelm a software-based logging and analysis
system. But if we can expose event-driven programming to
the programmer, data-plane applications can analyze, pre-
process and reduce the amount of data reports, using filters
and watchlists. For example, data planes can use timer events
to aggregate congestion information (e.g. queue size, packet
loss, or active flow count) and only report anomalous events
to the monitoring system periodically. Furthermore, given it
is now easy to write programs using enqueue and dequeue
events, applications such as microburst detection are now
much simpler to write than before [3].

Traffic Management and packet scheduling are not cur-
rently supported in the P4 language. But an event-driven
programming model helps to enable programmability of
three major traffic management functions: active queue man-
agement (AQM), policing, and packet scheduling. AQM algo-
rithms, such as RED [7], AFD [22], FRED [16], and PIE [23],
need to monitor and manage the packet queues, and need
access to several congestion signals in the ingress pipeline.
These include: current queue occupancy, queue service rate,
queueing delay, packet loss volume, rate of change of the
queue size, per-active-flow queue occupancy, and number of
active flows. Event-driven programming gives the user ac-
cess to all of these congestion signals (and more). Thus, AQM

is a natural use case of this approach, and was one of the mo-
tivating applications for our work. Similarly, policing often
requires a leaky token bucket meter [9]. While baseline PISA
architectures might expose fixed-function meters to P4 pro-
grammers as primitive elements [21], if we use timer events,
token bucket meters can be constructed from simple regis-
ters. This approach allows data-plane developers to build
and customize their own policing algorithms. Taking this
one step further, we can construct a complete, programmable
packet scheduler using our event-driven model in combina-
tion with the recently proposed Push-In-First-Out (PIFO)
queue [27].

In-Network Computing became a hot topic once it was re-
alized that programmable data planes can be used to acceler-
ate some end-host applications. For example, NetCache [13]
demonstrated improvements in throughput and tail-latency
of key-value storage systems by caching hot items within a
P4-based data-plane. Timer events allows the programmer
to write more sophisticated cache replacement policies, such
as approximate least-recently-used (LRU), entirely in the
data-plane. Timer events can also be used to quickly clear all
NetCache statistics, which, as the authors point out, would
allow the cache to more rapidly react to workload changes.
Link status change events enable coordination services, such
as NetChain [12], to quickly react to network failures.

Overall, we have found that P4 programs for a wide range of
applications can be simplified using the event-driven model.
We conclude (perhaps unsurprisingly with hindsight) that
network algorithms are inherently event-driven.

4 GLOBAL VS DISTRIBUTED STATE
One of the most important design decisions, when building
an event-driven data plane, is how state is shared (or not)
among different processing elements. If state is private and
local to a pipeline stage, we need away to share state between
stages, potentially maintaining multiple copies. Things gets
more complicated when a device has multiple independent
pipelines (e.g. Tofino has four independent pipelines). Decid-
ing how state is shared turns out to be a key design decision.
The answer depends on the line rate. Lower line rate

devices (e.g. a WiFi AP) can use multi-ported memory to
directly implement the logical event processing pipelines
described in Section 2 as separate physical pipelines, each
with a dedicated read/write port to global shared state. The
memory would need as many ports as the number of event
processing threads that access the state.

For high line rate devices, where multi-ported memory is
impractical to implement, we require a different approach.
For these devices, we can merge the logically separate event
processing pipelines into a single physical pipeline so that

136

Event-Driven Packet Processing HotNets ’19, November 13–15, 2019, Princeton, NJ, USA
Table 2: Various application classes that can benefit from event-driven programming.

Application Classes Examples Events Used

Congestion Aware Forwarding Load Balancing [1, 14], Congestion Control [8] Enqueue, Dequeue,
Buffer Overflow, Timer

Network Management
Neighbor/Link/Tunnel Failure Detection,

Data-plane State Migration [17],
Fast Re-Route [25]

Timer, Link Status

Network Monitoring
Sketches [5, 15], Time Window Functions,

Microburst Detection [3], INT [20]
Timer, Enqueue, Dequeue,

Buffer Overflow

Traffic Management
AQM [16, 22], Policing,
Packet Scheduling [27]

Enqueue, Dequeue,
Buffer Overflow/Underflow, Timer

In-Network Computing Coordination [12], Caching [13] Timer, Link Status

state is local to a single physical pipeline stage as in the base-
line PISA model. Metadata, created by enqueue and dequeue
events, propagates through the pipeline (on its own, or along-
side arriving packets), allowing processing to proceed at line
rate.

While this model is conceptually simple, we need to make
sure the pipeline is wide enough to carry all the events, and
at the same time, be able to handle all the required stateful
operations. For example, suppose we write a P4 program to
compute queue sizes. On a single clock cycle, an enqueue
event wants to increment the size of queue 0, a dequeue
event wants to decrement the size of queue 1, and an ingress
packet event wants to read the size of queue 2 in order to
make a forwarding decision. Is it possible to support all of
these memory operations simultaneously without resorting
to multi-ported memory?

Rather than use multi-ported memory we can instead use
multiple single-ported register arrays that are suitably coor-
dinated. Packet event read-modify-write operations always
operate on the main register that maintains the algorithmic
state, the queue size in our example. The read-modify-write
operations for enqueue and dequeue events are aggregated
in separate register arrays, in the same or potentially a dif-
ferent pipeline stage. During idle clock cycles when there
is spare memory bandwidth available, the aggregated oper-
ations are applied to the main register that maintains the
algorithmic state. Idle clock cycles occur when the workload
contains larger than minimum size packets or when the PISA
pipeline is configured to run faster than line rate, which is
typical in modern switch chips [19]. Figure 3 depicts how
this mechanism can be used to process enqueue, dequeue,
and packet events to maintain queue sizes.
Stale state. It is important to note that whenever state is
distributed across pipeline stages, the algorithmic state will
sometimes be stale because of the time it takes state to prop-
agate through a pipeline, or from one pipeline to another.
One redeeming feature is that staleness is bounded if the
pipeline runs slightly faster than the line rate (as is typical).
So, while the state may be temporarily imprecise, the result-
ing algorithm has well-defined behavior. For example, an

application detecting heavy hitters might detect a flow a few
nanoseconds late, which is unlikely to matter. On the other
hand, some applications require more care (e.g. for consensus
algorithms) and the programmer needs to be aware of the
staleness. If needed, staleness can be reduced by freeing up
processing capacity in the pipeline, for example by not using
some of the external ports. This means there is more capac-
ity available to carry metadata from one stage to another,
to update algorithmic state. It also opens up another design
trade-off: packet processing bandwidth versus accuracy of
the data-plane algorithm. This trade-off closely resembles the
one provided by sketch algorithms: switch memory versus
accuracy of the data-plane algorithm.
When distributing state between stages, we also need to

consider how memory accesses are scheduled, depending
on which events are the most important and urgent, and
whether priorities are assigned by the programmer, the com-
piler, or the hardware. We plan to address these questions in
future work.

Figure 3: Updating algorithmic state across multiple
pipeline stages. The goal: keep the algorithmic state
(queue size) up to date. Low-priority enqueue and de-
queue events are aggregated in separate register ar-
rays, then applied to the main register when memory
bandwidth is available.

137

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Stephen Ibanez et al.

5 HARDWARE FEASIBILITY

SUME Event Switch Architecture. To demonstrate that
our event-driven architecture is feasible to implement in
hardware while processing packets at full line rate, we devel-
oped a prototype on the NetFPGA SUME platform using the
P4−→NetFPGA tools [11]. Our prototype, which we call the
SUME Event Switch supports regular P4 packet events, plus
enqueue, dequeue, and drop events, timer events, link status
change events, and a configurable packet generator. Figure 4
shows a block diagram. The Event Merger is responsible for
gathering all new events and placing them into metadata that
flows through the pipeline. If there are no ingress packets for
the metadata to piggyback onto, the Event Merger generates
an empty packet, attaches the event metadata and injects it
into the P4 pipeline. The pipeline functions themselves are
described in P4, and compiled using Xilinx SDNet [28] to
run on the FPGA.
The event handling is very efficient, requiring relatively

few FPGA resources. Table 3 shows that on a Xilinx Virtex-
7 FPGA, the event logic consumes at most 2% additional
resources.

In practice.We teach a graduate networking class at Stan-
ford in which students build the hardware and software
components of an Internet router; then extend it to add new
features of their own choosing. The class uses P4 to define
the forwarding behavior. In 2019, the students built their
projects on the SUME Event Switch and implemented sev-
eral different data-plane applications. We highlight a few
here.
Liveness Monitoring in the Data Plane. The event-driven

programming model was used to implement a protocol in the
data plane that periodically checks the liveness of neighbor-
ing network devices by transmitting echo request packets
and waiting for replies. Upon detecting failure of a neighbor,
the data plane transmits notifications to a central monitor,
with no intervention by the control plane.

Time-Windowed Network Measurement. A common data-
plane task is to compute a function of a signal, such as a
moving average, over a sliding window of time. This sort of
operation is very natural to implement using timer events.
One student group demonstrated how to use timer events in

Table 3: The cost of adding support for events in the
SUME Event Switch architecture. The increase in re-
sources are shown as a percentage of the total re-
sources available in a Xilinx Virtex-7 FPGA.

FPGA Resource % Increase
Lookup Tables 0.5
Flip Flops 0.4
Block RAM 2.0

conjunction with a simple shift register to accurately mea-
sure flow rates in the data plane.

Computing Congestion Signals. In this project, the students
implemented a simple AQM policy to enforce flow-level fair-
ness, similar to FRED [16]. Enqueue and dequeue events were
used to compute congestion signals (total buffer occupancy,
per-active-flow buffer occupancy, and active flow count).
Timer events periodically sample the buffer occupancy and
send a report to a monitor which maintains a time series of
the buffer occupancy.
Fast Re-Route. Link status change events make it easy to

implement fast re-route policies in the data-plane. When a
link failure is detected, the prototype updates its forwarding
decisions immediately to send packets along a backup route.

Community. We will contribute the SUME Event Switch
architecture to the P4−→NetFPGA project2 so that the commu-
nity can experiment with their own event-driven programs
on real hardware.

6 RELATION TO MODERN PISA DEVICES
Today’s P4 programmable devices expose a programming
model that resembles the one provided by baseline PISA
architectures. That is, the only events that are explicitly ex-
posed to the programmer are packet events. Some P4 targets
can indirectly support other events as well. For example,
Tofino [19] contains a configurable packet generator which
the control-plane can configure to generate periodic packets
and hence emulate timer events. Tofino also supports packet
recirculation, which can emulate dequeue events that trigger
the ingress pipeline. However, supporting all of the events
listed in Table 1 requires changes to existing hardware.

7 RELATEDWORK
Our proposed Event-Driven PISA architecture builds directly
upon the baseline PISA architecture described in [2]. The
authors of dRMT [4] propose to modify the baseline PISA
architecture by disaggregating tablememory and compute re-
sources. They demonstrate that this approach leads to higher
resource utilization as well as more flexibility when applying
match-action tables. However, the programming model that
is used to configure their dRMT architecture is identical to
the one provided by the baseline PISA architecture. There-
fore, our event-driven PISA architecture is able to support
the same programs as dRMT.

There has been a number of recent efforts to build new ab-
stractions for programming the network data-plane. Domino
[26] introduced the notion of packet transactions which are
stateful read-modify-write operations that are performed
atomically per packet. This per-packet atomic constraint

2GitHub Wiki: https://github.com/NetFPGA/P4-NetFPGA-public/wiki

138

Event-Driven Packet Processing HotNets ’19, November 13–15, 2019, Princeton, NJ, USA

Figure 4: The SUME Event Switch architecture implemented on the NetFPGA SUME platform.

enables Domino to provide consistency guarantees to data-
plane programs. However, it also significantly limits the
complexity of the read-modify-write operations. As a result,
the authors of FlowBlaze [24] propose a new abstraction
which distinguishes between global state and flow state. Op-
erations on flow state can be more complex because they
only need to complete atomically between packets of the
same flow, rather than on a per-packet basis. Both of these
proposals only consider single threaded data-plane programs.
In an event-driven programming model there can be many
event processing threads that share the same state. Defining
a consistency model for multi-threaded data-plane programs
remains an area of future work.

8 CONCLUSION
All network algorithms are event-driven. As has been shown
in this paper, P4 is actually a domain specific language suit-
able for expressing line rate event processing, not just packet
processing. The set of data-plane algorithms that can be ex-
pressed in today’s data-plane programming model is a strict
subset of what can be expressed using our more general
event-driven programming model. Events give data-plane
programmers much more flexibility, enabling them to im-
plement algorithms that derive and use congestion signals,
update state multiple times and independently of packet
arrivals and departures, and even compute functions over
windows of time much more naturally. However, data-plane
algorithms are not the only network algorithms that are
event-driven. If one looks at the protocols running in end-
host software and in the control plane, it can be seen that
they are also event-driven. For example, the state machine
for a simple reliable delivery protocol is driven by packet
arrivals, packet departures, and timeout events. And the
state machines for link state routing protocols are driven
by periodic events, timeout events, and link status change
events. Since most network algorithms are event-driven, we

believe that data-plane architectures should be as well. This
approach has the potential to offload much more functional-
ity to high-speed data-plane hardware.

ACKNOWLEDGMENTS
The authors thank Andy Fingerhut, Nate Foster, and Mihai
Budiu for fruitful discussions that helped lead to some of
the ideas presented in this paper. The authors also thank
the anonymous HotNets reviewers whose valuable feedback
helped to improve the quality and clarity of this paper. This
research is funded by Xilinx Inc, the Stanford Platform Lab,
and the UK’s Engineering and Physical Sciences Research
Council (EPSRC) under the EARL: sdn EnAbled MeasuRe-
ment for alL project (Project Reference EP/P025374/1).

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Francis Matus, Rong Pan,
Navindra Yadav, George Varghese, et al. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM
CCR, Vol. 44. ACM, 503–514.

[2] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding metamorphosis: Fast programmable match-action processing
in hardware for SDN. In ACM SIGCOMM Computer Communication
Review, Vol. 43. ACM, 99–110.

[3] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and
Ori Rottenstreich. 2018. Catching the Microburst Culprits with Snappy.
In Proc. of the Workshop on Self-Driving Networks. ACM, 22–28.

[4] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Var-
gaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse
Chuang, Isaac Keslassy, et al. 2017. drmt: Disaggregated programmable
switching. In Proc. of ACM Sigcomm. ACM, 1–14.

[5] Graham Cormode and Shan Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75.

[6] Huynh Tu Dang, Marco Canini, Fernando Pedone, and Robert Soulé.
2016. Paxos made switch-y. ACM SIGCOMM CCR 46, 2 (2016), 18–24.

[7] Sally Floyd and Van Jacobson. 1993. Random early detection gateways
for congestion avoidance. IEEE/ACM Transactions on networking 4

139

HotNets ’19, November 13–15, 2019, Princeton, NJ, USA Stephen Ibanez et al.

(1993), 397–413.
[8] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,

Andrew W Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-
architecting datacenter networks and stacks for low latency and high
performance. In Proc. of the Conference of ACM Sigcomm. ACM, 29–42.

[9] Juha Heinanen and Roch Guérin. 1999. A single rate three color marker.
Technical Report.

[10] Thomas Holterbach, Edgar Costa Molero, Maria Apostolaki, Alberto
Dainotti, Stefano Vissicchio, and Laurent Vanbever. 2019. Blink: Fast
connectivity recovery entirely in the data plane. In 16th USENIX NSDI
Symposium. 161–176.

[11] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman.
2019. The P4-> NetFPGAWorkflow for Line-Rate Packet Processing. In
Proc. of ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays. ACM, 1–9.

[12] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-free sub-
rtt coordination. In 15th USENIX NSDI Symposium. 35–49.

[13] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. Netcache: Balancing
key-value stores with fast in-network caching. In Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 121–136.

[14] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and
Jennifer Rexford. 2016. Hula: Scalable load balancing using pro-
grammable data planes. In Proc. of the Symposium on SDN Research.
ACM, 10.

[15] Yuliang Li, RuiMiao, Changhoon Kim, andMinlan Yu. 2016. FlowRadar:
a better NetFlow for data centers. In 13th USENIX NSDI Symposium.
311–324.

[16] Dong Lin and Robert Morris. 1997. Dynamics of random early detec-
tion. In ACM SIGCOMM CCR, Vol. 27. ACM, 127–137.

[17] Shouxi Luo, Hongfang Yu, and Laurent Vanbever. 2017. Swing state:
Consistent updates for stateful and programmable data planes. In Proc.
of the Symposium on SDN Research. ACM, 115–121.

[18] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan
Yu. 2017. Silkroad: Making stateful layer-4 load balancing fast and
cheap using switching asics. In Proc. of the ACM Sigcomm Conference.
ACM, 15–28.

[19] Barefoot Networks. 2019. Tofino - World’s Fastest P4-programmable
Ethernet Switch ASICs. (2019). https://barefootnetworks.com/
products/brief-tofino/

[20] P4.org. 2018. In-band Network Telemetry (INT) Dataplane Specifica-
tion. (2018). https://github.com/p4lang/p4-applications/blob/master/
docs/INT.pdf

[21] P4.org. 2018. P4 Portable Switch Architecture (PSA). (2018). https:
//p4.org/p4-spec/docs/PSA-v1.1.0.html

[22] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. 2003.
Approximate fairness through differential dropping. ACM SIGCOMM
Computer Communication Review 33, 2 (2003), 23–39.

[23] Rong Pan, Preethi Natarajan, Chiara Piglione, Mythili Suryanarayana
Prabhu, Vijay Subramanian, Fred Baker, and Bill VerSteeg. 2013. PIE:
A lightweight control scheme to address the bufferbloat problem. In
IEEE 14th International Conference on High Performance Switching and
Routing (HPSR). IEEE, 148–155.

[24] Salvatore Pontarelli, Roberto Bifulco, Marco Bonola, Carmelo Cascone,
Marco Spaziani, Valerio Bruschi, Davide Sanvito, Giuseppe Siracusano,
Antonio Capone, Michio Honda, et al. 2019. Flowblaze: Stateful packet
processing in hardware. In 16th USENIX NSDI Symposium.

[25] Roshan Sedar, Michael Borokhovich, Marco Chiesa, Gianni Antichi,
and Stefan Schmid. 2018. Supporting emerging applications with
low-latency failover in p4. (2018).

[26] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mo-
hammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McKe-
own, and Steve Licking. 2016. Packet transactions: High-level program-
ming for line-rate switches. In Proceedings of the 2016 ACM SIGCOMM
Conference. ACM, 15–28.

[27] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh,
Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan,
Tom Edsall, Sachin Katti, and Nick McKeown. 2016. Programmable
packet scheduling at line rate. In Proc. of ACM SIGCOMM Conference.
ACM, 44–57.

[28] Xilinx. 2018. SDNet. (2018). https://www.xilinx.com/products/
design-tools/software-zone/sdnet.html

140

https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://github.com/p4lang/p4-applications/blob/master/docs/INT.pdf
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://p4.org/p4-spec/docs/PSA-v1.1.0.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html
https://www.xilinx.com/products/design-tools/software-zone/sdnet.html

	Abstract
	1 Introduction
	2 Event-Driven Programming
	3 Event-Driven Applications
	4 Global vs Distributed State
	5 Hardware Feasibility
	6 Relation to Modern PISA Devices
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

