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ABSTRACT
For the past two decades, the communication channel be-
tween the NIC and CPU has largely remained the same—
issuing memory requests across a slow PCIe peripheral inter-
connect. Today, with application service times and network
fabric delays measuring hundreds of nanoseconds, the NIC–
CPU interface can account for most of the overhead when
programming modern warehouse-scale computers.
In this paper, we tackle this issue head-on by proposing

a design for a fast path between the NIC and CPU, called
Lightning NIC (L-NIC), which deviates from the established
norms of o�oading computation onto the NIC (in�ating
latency), or using centralized dispatcher cores for packet
scheduling (limiting throughput). L-NIC adds support for
a fast path from the network to the core of the CPU by
writing and reading packets directly to/from the CPU register
�le. This approach minimizes network IO latency, providing
signi�cant performance improvements over traditional NIC–
CPU interfaces.
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1 INTRODUCTION
This paper is about the design of network interfaces (NICs)
for warehouse-scale computing. Traditionally considered the
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Figure 1: Simpli�ed L-NIC architecture. Packets are
transferred between a PISANIC pipeline and CPU reg-
isters via a simple FIFO interface.

domain of computer architecture and operating systems, NIC
design has become essential to making the network fast, low
latency, and e�cient for datacenter applications. So much
so that—despite widely available commercial NICs—cloud
computer companies are designing and deploying their own
custom NICs in order to reduce latency, increase throughput,
o�oad the networking stack, and connect e�ciently to local
accelerators, such as FPGAs and GPUs [1, 11, 14]. NIC de-
sign has become an essential part of cloud computing. While
motivations vary, it is common to see designs of so-called
“Smart NICs” with multiple CPU cores on the NIC to o�oad
network operations. In some cases the NICs accelerate packet
processing, perhaps in proprietary ways [22, 24]; in others,
they o�oad work from the servers, allowing the liberated
server cycles to be rented to paying customers. It begs the
question as to why—when we want a packet to be processed
as fast as possible—would we place a NIC-based CPU core in
its way? CPUs are generally ill-suited to processing packets
at speed because of their complex cache hierarchies, non-
deterministic processing time, and low degree of parallelism
(compared to an ASIC). A CPU on the NIC typically requires
its own operating system, thread scheduler, and applications,
leading to signi�cant overhead. It likely has lower perfor-
mance than the server CPU it is o�oading. And while a CPU
might help process packets at 10–25 Gb/s, it is a stretch to
imagine a CPU processing packets for 100 Gb/s NICs and
beyond; it is not a scalable solution. Our suspicion is that the
added complexity is considered worthwhile in the short-term
because there is uncertainty about the correct functions to
place in the NIC. Hence, for now, NICs contain CPUs.
Our research is about high performance NIC designs fur-

ther into the future. We ask: What NIC architecture would
minimize the latency of a remote procedure call (RPC)? Our
high-level approach is to co-design the CPU and NIC to-
gether, to bring message data as fast as possible into the
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heart of the server CPU and start executing code immedi-
ately (rather than bringing slower CPUs out onto the NIC).
We call our architecture Lightning NIC, or L-NIC, and we
argue that—compared to current PCIe interfaces—L-NIC re-
duces packet latency from the wire to the thread of execution
in the server CPU by an order of magnitude (from 2 µs to
less than 200 ns), while o�oading transport, encryption, and
thread scheduling to a P4-programmable NIC [8, 9].

But �rst, we must consider why latency matters so much,
and why it needs to be reduced. In recent years there has
been much focus (commercial and research) on reducing
latency to remote storage in cloud data centers. Remote Di-
rected Memory Access (RDMA), for example, allows one
server to remotely read/write blocks of memory in another
server’s memory, with small requests completing in as low
as 2–3 µs, by implementing everything in hardware. A cus-
tomized NIC [5] accesses memory directly, without involv-
ing the CPU, freeing it for other work. While powerful for
one-time read/write operations, RDMA is of less use to ap-
plications requiring multiple, dependent memory accesses.
For example, a hash lookup in a key-value store requires an
initial lookup in a hash table, followed by a second access to
the value; these operations require two remote calls. Enter-
prise data-processing systems typically try to avoid multiple
remote calls by requiring large data blocks be read sequen-
tially (e.g., Spark [29], MapReduce [13]), making them only
useful for large long-running batch jobs.
RAMCloud, on the other hand, was designed using low-

latency RPCs to “achieve the lowest possible latency for small
random accesses in large-scale applications” [27] and has
reported access times in a large datacenter below 10 µs, claim-
ing an improvement of 50–10,000 times over typical storage
systems of the day. RAMCloud has larger per-transaction
latency than RDMA, but implements a fast RPC mechanism
involving waking up the remote CPU, executing a thread,
and possibly multiple memory references before returning a
response. The RAMCloud approach (low-latency RPC calls)
�ts well with modern microservices in which a frequently
used service (e.g., a web server) is accessed by many cloud
customers. It is particularly e�ective for services accessing
data present in remote DRAM (rather than disk).

Future large datacenter applicationswill likelymake heavy
use of microservices. We aim to accelerate microservices sig-
ni�cantly by allowing them to be built by stringing together
hundreds or thousands of tiny, short-lived, low-latency server-
less threads of execution (e.g., AWS Lambda [2], Google
Cloud Functions [4], or Azure Functions [3]). If these threads
operate on cache-resident data, we call them “nanoservices.”
These are small, lightweight, self-contained, serverless func-
tions that are designed to start immediately (or close to)
when a request arrives, then operate on that message from

NIC

PCIe|IOMMU|MEM|LLC|L2C|MMU|L1C|VMM|REG

PCIe|IOMMU|LLC|L2C|MMU|L1C|VMM|REG

FIFO|REG

a. Direct Memory Access (DMA)

b. Direct Data IO (DDIO)

c. Lightning NIC (L-NIC)

CPU
Pipeline

Figure 2: L-NIC places packet data directly into
a CPU register, eliminating intermediate overheads
such as interconnect delay (PCIe), address translations
(IOMMU,MMU, and VMM), memory (MEM) and cache
accesses (LLC, L2C, and L1C).

the CPU cache (the L1 cache on a modern CPU is about 200-
times faster than accessing DRAM). Whereas RDMA uses
hardware to avoid using the remote CPU, L-NIC is designed
for applications requiring remote computation, and therefore
require getting a message into the core of the CPU as soon
as possible, bypassing the cache hierarchy, and starting the
thread of execution. If the thread is small, and is responsible
for a very small set of data, then it can run signi�cantly faster
if it is not held up (or scheduled out) waiting for a cache line
to load from DRAM.
L-NIC is optimized for this type of computation. A high-

level view of the L-NIC architecture is shown in Figure 1
(Section 3 goes into more detail). Arriving packets on the left
are stream-processed in the NIC’s P4-programmable match-
action (MAU) pipeline, to check header values, translate vir-
tual to physical network addresses, decrypt the payload,
and implement a fast transport protocol (e.g., NDP [15] or
Homa [23]). The interface from the NIC to the CPU has two
key attributes: (1) It uses a fast, wide, synchronous FIFO in-
terface directly into the register �le; one register is dedicated
to reading messages from the head of the FIFO, another for
writing outgoing messages to the tail of the FIFO, (2) Mes-
sage transfers are atomic; when a thread is scheduled to read
a message from the FIFO, it keeps reading until the end of
message before being eligible for swapping out. Similarly for
sending messages. When messages arrive, the NIC identi�es
the correct thread (by indexing a local MAU table based on
the packet header) and alerts the local thread scheduler run-
ning on the NIC. Next, the entire RPC message is sent over
the FIFO interface, with the head appearing in the heart of
the CPU, bypassing the entire memory hierarchy and avoid-
ing any form of coherency protocols. Register accesses run
at the speed of the CPU, and therefore a 128-bit wide register
on a 3GHz CPU corresponds to a data rate over 350Gb/s.
More importantly, the CPU can start executing on the mes-
sage within 150 ns of it arriving at the NIC. Between two
servers with L-NICs, with three 200 ns Ethernet switches
in-between, an RPC could complete in less than 1 µs.
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Figure 3: An example of a partial Othello game tree.
Each node (a nanoservice) computes at most b moves
and branches the new board states to b nodes. The
game tree is searched d moves into the future.

Figure 2 shows why L-NIC (c, in green) has much lower
latency than traditional DMA (a) or DDIO (b), which places
data directly into the last-level cache. These alternatives are
described in more detail in Section 5.
In the next section we motivate the need for L-NIC us-

ing example applications; speci�cally, a well-known board
game that operates on cache-resident data. On a single-core
machine, the application is limited by the CPU and cache-
misses. If distributed to servers with L-NIC, we can accel-
erate processing and bring down the tail completion time
by 30x. Furthermore, by using L-NIC we can achieve over
50% reduction in processing time relative to a distributed
implementation that uses traditional network interfaces.

2 A NANOSERVICE APPLICATION
Ananoservice is a fast, cache-resident, and compute-intensive
RPC with service times in nanoseconds. A group of such
services—running in parallel acrossmachines in a data center—
forms a nanoservice application.

Let us consider an example of a simple state-space search
application, we call Othello-Player. As the name suggests, the
application plays the board-game Othello (aka Reversi [6])
by evaluating as many future moves as possible. Othello was
invented in the 1800s and is played on a 8 ⇥ 8 grid board by
two players, similar to chess or checkers. Players take turns
to place a black or white disk onto an empty location on the
board in an attempt to capture the opponent’s discs, which
then become their disks. The goal is to own more disks than
the opponent by the end of the game.

Given an initial board state, Othello-Player must evaluate
possible future moves (from an estimated total of 1028) and
decide which move to take next. A tree of such possible
moves, starting from the initial state, is called an Othello
game tree (Figure 3). Each node in the game tree, reads in
a board state from the previous node and generates one or
more new board states for the following nodes. The level
at depth (d) of the Othello game tree represents all possible
board states d moves into the future. We call the number of

board states (or moves) originating from a node its branching
factor, b—the average branching factor in Othello is 7, with
a standard deviation of 3.
If we run Othello-Player on a single CPU core, not only

will the serial computation take a long time but also, as
the depth increases, the data will no longer �t in the CPU
cache and require expensive main-memory accesses. This is
a good example of a typical application to accelerate using
nanoservices: (1) Massively parallel. Nodes in the same level
in the Othello game tree can run independently in parallel. (2)
Cache resident. Theworking set of each node (a few kilobytes)
�ts in the data caches, thus avoiding expensive accesses to
DRAM. (3) Short service times. Each node can look one step
ahead from the current board state very quickly (under a
microsecond).
In our implementation, each node runs as a nanoservice

that receives an initial board state, looks one move ahead,
and sends new boards into the network, which then load
balances these boards to nodes (or nanoservices) across many
servers. The process will continue until the desired depth is
reached, at which point the results propagate back up the
tree to the root node.

Wewill show in Section 4 that distributed Othello-Player is
limited by the communication delay. By reducing communi-
cation latency, the nanoservice and the application speedup
dramatically.

Nanoservices in the wild. Nanoservices are not just lim-
ited to Othello-Player, but are applicable to a broader class of
applications including state-space search [30], theorem prov-
ing [20], symbolic execution [10], physical simulations [16],
and more. Moreover, emerging serverless computing plat-
forms [2–4] may lead to widespread use of nanoservices,
especially, for massively parallel applications that are small,
compute intensive with strict tail-latency service level objec-
tive (SLOs) (e.g., Internet of Things (IoT), image and video
processing, autonomous vehicle communication, and event
streaming) [7].

3 THE L-NIC ARCHITECTURE
Figure 4 shows the L-NIC architecture. It consists of a P4
programmable NIC pipeline, which contains standard MAC/-
PHY logic, an MAU-based PISA pipeline, and dedicated en-
cryption/decryption logic. The NIC connects directly to the
register �le of each CPU core using a simple synchronous
FIFO interface—this is the fast path for low-latency RPC mes-
sages. The NIC also supports a slower and more traditional
(RDMA-like) path to transfer packets to/from the last-level
cache (LLC).
The main features of the L-NIC design are as follows:
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Figure 4: The proposed L-NIC architecture.

• Fast path to the CPU (F1): A wide, fast synchronous
FIFO interface between the NIC and the CPU register
�le.

• Message dispatching (F2): Dispatches full RPCmessages
to the CPU, not individual packets. Decides if message
should be sent over the fast path (to CPU register �le)
or slow path (through memory hierarchy).

• Thread scheduling (F3): Ensures the target application
thread is running, ready to read a message from the
register �le. Application threads perform atomic read-
/writes to/from registers on message boundaries.

• Network transport (F4): Implements transport protocol
such as Homa [23] or NDP [15], but the NIC pipeline
is programmable allowing other transport protocols
to be implemented, instead.

Next, we explore each of these features in detail.

F1: Fast path to the CPU. In order to minimize the latency
between the network and the CPU core, L-NIC supports a
dedicated fast path to each processor’s register �le. This fast
path is implemented using a simple synchronous FIFO in-
terface running over a wide bus of fast serial I/Os. Today, a
serial I/O line routinely runs at 50Gb/s, and with eight lines
a host can do 200Gb/s I/O from NIC to CPU. The head of
the receive FIFO is stored in a dedicated register in the pro-
cessor’s register �le (Figure 4). Similarly, the tail of the send
FIFO is stored in a separate dedicated register. By reading
and writing the head and tail registers, an application can ac-
cess the network with the minimum possible latency—there
is no need for messages to traverse the memory hierarchy.

F2: Message dispatching. A low-latency NIC must decide
how to load balance messages across CPU cores. If load is
imbalanced, some cores will be overloaded while others sit
idle, resulting in long queueing delays and poor tail latency.
Rather than sending individual packets to CPU cores, L-

NIC dispatches entire messages. This is because applications

deal with messages not packets; if an application only re-
ceives one packet of a multi-packet message, it may need to
sit idle waiting for the rest of the message to arrive. The P4
pipeline on L-NIC is ideally suited for performing e�cient
message dispatching. The P4 pipeline keeps track of packets
within a message as well as the current state of the CPU
cores, making its dispatching decisions based on which cores
are idle.
The L-NIC also decides which path to send the message

along: the fast path or the slow path, based on the type of
application and its sensitivity to latency. The decision is made
by indexing into a MAU table based on the packet header.
Nanoservice messages take the fast path into the register �le,
while RDMA and data-intensive apps take the slower path
into LLC or main memory.

F3: Thread scheduling. L-NIC must also participate in the
operating system’s thread scheduling logic. L-NIC ensures
the target thread is running on the selected CPU core so
that it can immediately start reading the message from the
register �le. The thread reads/writes atomically to/from the
head/tail registers on message boundaries. Latency-sensitive
application threads can poll or be woken; they can decide.
We expect both models to be used, depending on application
and CPU utilization requirements. In an extreme case, if a
message takes a long time to process, L-NIC may interrupt a
thread to prevent it from hogging the core [18]; but this is
not the common case.

F4: Network transport. L-NIC implements the transport
logic in the P4 pipeline.We draw inspiration from theHoma [23]
transport protocol, which achieves tail latencies within 3–4x
of the minimum possible latency on an unloaded network.
We believe that, for nanoservices, the transport logic would
be too slow if run in software. As network speeds increase,
CPU cores will quickly become the bottleneck. Instead, the
transport logic runs in a P4-programmable NICwith anMAU

55



The Case for a Network Fast Path to the CPU HotNets’19, November 13–15, Princeton, NJ, USA

Metric Parameter: Values

Latency Net to Fabric, Mem, LLC: 1 µs
Net to Reg: 200 ns, 400 ns, 600 ns

Access time Memory: 100 ns, LLC: 10 ns, Reg: 1 ns
Service time Map: X ⇠ MapDist , Reduce: 500 ns

Others #Hosts: 2500, #Branches: Y ⇠ BranchDist

Table 1: Parameter values used in simulations.

pipeline. Such a pipeline is well-suited to perform per-packet
processing, and we believe that the P4 language is expressive
enough to implement the required transport functions.

Design observations. Traditional RPCs that traverse the
cache and memory hierarchy are often bottlenecked by ex-
pensive address translations between device address space
and physical address space (IOMMU), between virtual ad-
dress space and physical address space (MMU), or between
guest address space and host address space (VMM). By plac-
ing data directly into the register �le, it is address-less—the
application can decide whether or not to store it in memory,
and if so the address translation is immediate. Furthermore,
in a virtualized environment an RPC to a VM will have the
same low latency as a bare metal server, because the message
does not need to traverse a complex network stack in the
host OS or the guest’s VM.

In some cases, the P4 pipeline might help accelerate light-
weight streaming applications even further. Many recent
papers demonstrate applications which can be greatly ac-
celerated this way [12, 17, 21]. In our Othello-Player state-
space search example, moves are evaluated using a minimax
search [19], which can be partially o�oaded to a P4 pipeline,
as explained in Section 4.

4 PRELIMINARY EVALUATION
We evaluate the potential bene�ts of our proposed L-NIC
design using the Othello-Player application described in Sec-
tion 2.

4.1 Experiment Setup

Single-core Othello testbed. We gather baseline measure-
ments by implementing and evaluating an optimized Othello-
Player1 application running on a single Intel Xeon CPU run-
ning at 2.40GHz. This implementation can search a single
move ahead in 890 ns with 99-th percentile of 1.68 µs.

Distributed Othello simulator. We built a Python-based
discrete event simulator2 to evaluate performance of a dis-
tributed Othello-Player implementation. Table 1 shows the

1Othello-Player GitHub: https://github.com/l-nic/othello
2Othello-Simulator GitHub: https://github.com/l-nic/othello-sim
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Figure 5: Completion time CDFs for searching 5 lev-
els deep in the Othello game tree for a single-core
implementation and distributed Othello implementa-
tion using traditional DMA to main memory, DMA to
LLC (like DDIO), and L-NIC.

main simulation parameters. Note that the map message ser-
vice time and the branching factor are both random variables
drawn from distributions computed using the single core
Othello-Player implementation.

The simulator models a topology of hosts connected to a
network. Each host maintains a single queue to store requests
that arrive from the network. Our simulations assume that
the network has in�nite capacity with no queueing in the
switches.
The simulation proceeds in two phases, a map phase fol-

lowed by a reduce phase. Upon initialization, one host gener-
ates a random Othello board, evaluates all possible boards
one move into the future, then sends the new boards into the
network, load-balancing requests across the hosts to evaluate
the next move. Our simulated network load-balances map
requests by hashing the message ID and mapping the result
to a host. This process continues until the desired depth has
been reached, at which point the map phase of the simulation
is complete and the reduce phase begins. During the reduce
phase, the hosts at the leaves send their results back up the
Othello game tree; results are captured in reduce messages.
All non-leaf hosts must wait for all the corresponding reduce
messages to arrive before forwarding its own results up the
tree.

O�loading Reduce processing. Upon receiving a reduce
message, the host must lookup the state associated with
the message to keep track of two pieces of state: (1) the
number of responses that have arrived so far, and (2) the
running maximum (or minimum) of the responses. These
two pieces of state allow the host to decide which value to
send up the tree. It turns out that this processing logic maps
very e�ciently onto L-NIC’s P4 pipeline and thus can be
o�oaded. In fact, the reduce processing in a map-reduce
implementation of the minimax search algorithm can always
be o�oaded to L-NIC’s P4 pipeline.
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Figure 6: The 50th- and 99th-percentile completion
time against varying search depths for the Othello
game with di�erent NIC implementations.

4.2 Comparing NIC–CPU Interfaces
The simulator is designed to model three types of network
interfaces: DMA, DDIO, and L-NIC. DMA models the tradi-
tional network interface with a DMA engine to move pack-
ets between the network and the CPU through the host’s
main memory. DDIO is intended to model Intel DDIO with a
DMA engine to move packets between the network and CPU
through LLC. Finally, L-NIC directly moves packets between
the network and CPU’s register �le without going through
the memory hierarchy. The simulator also models the time
it takes the CPU to fetch each message from the appropriate
memory location (main memory, LLC, or register).

Search time evaluation. We ran the simulator to evaluate
how long it takes to search �ve moves ahead for each type
of NIC–CPU interface. We also evaluate performance im-
provements by o�oading the reduce message processing to
L-NIC’s P4 pipeline.
Figure 5 is a CDF of the search completion times for 300

moves for each NIC–CPU interface, as well as the single-core
implementation. We see that DDIO provides a very small
improvement over the traditional DMA approach. This is
a result of the reduction in the time to fetch each message
from memory, 10 ns rather than 100 ns. By using the L-NIC
interface, we are able to reduce the average completion time
by 34% and 30% over the DMA implementation and DDIO
implementation, respectively. The performance is improved
because of the reduction in network communication latency,
which in turn increases CPU utilization allowing the search
to complete more quickly. If we o�oad the reduce process-
ing onto L-NIC’s P4 pipeline, it runs 56% and 54% faster
than DMA and DDIO, respectively. For comparison, the 99%
search time for the L-NIC implementation with reduce of-
�oad enabled is 30x lower than the 99% search time of the
single-core implementation.

DMA DDIO L-NIC
(600 ns) (400 ns) (200 ns)

CPU (%) 70% 77% 80% 82% 84%
Table 2: The average CPU utilization across all hosts
when searching 8 levels deep using 1000 host ma-
chines, a map message service time of 1 us, and a
branching factor of 5.

Figure 6 shows how the median and 99% completion times
change with the depth of the search. As long as there is a
su�cient number of hosts to handle all of the map requests
in parallel at each level of the search tree, then host queues
will never build up during the map phase, and the completion
time is a linear function of the depth that is searched into
the tree. We see that this linear dependence is true until we
reach a search depth of 6 levels. At 6 levels deep, the number
of hosts required to process all the map messages in parallel
exceeds the number of hosts in the topology (2500) and, thus,
the host queues build up causing the completion time to be
a function of both search depth and queueing delay.

CPU utilization. By reducing the communication latency
between hosts, messages spend less time in the network
and more time being processed by CPUs, which means that
CPU utilization is increased. Table 2 shows average CPU
utilization for di�erent NIC interfaces in an experiment that
simulates searching 8 levels deep on 1000 hosts. We see that,
in this situation, if L-NIC is able to move packets between the
network and the register �le in 200 ns, then it can increase
CPU utilization by 14% over the traditional DMA interface.
Typically, to increase CPU utilization we need to multi-

plex many application threads on the same CPU core. The
context switch overheads associated with this approach lead
to disastrous consequences for tail latency sensitive applica-
tions. Fortunately, L-NIC provides an alternative solution by
simply decreasing network communication latency.

5 RELATEDWORK
In hardware, the NIC–CPU interface has seen little attention
for over two decades. Modern computer systems still use
traditional (remote) direct memory access (DMA) over a slow
PCIe bus. The authors of [25] demonstrated that PCIe is re-
sponsible for 80–90% of the latency between the network and
CPU, which can easily exceed 1 µs. In 2012, Intel introduced
Direct Data IO (DDIO) to move packets directly into LLC, re-
ducing cache misses and memory bus contention. However,
DDIO can only use 10% of the LLC, and if an application
reads network data too slowly it is evicted into the main
memory, eliminating the bene�ts of DDIO. Today, unlike
L-NIC, the network industry is largely focused on o�oad-
ing computation south of the PCIe onto CPUs running on
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Smart NICs. But putting more CPUs in the way of packets
will increase end-to-end communication latency. Further-
more, new serialization and encoding schemes are pushing
down network switch latencies. In�niband switches, for ex-
ample, have latencies below 100 ns [5], and it is reasonable
to assume Ethernet will follow suit.

In software, recent proposals tend to reduce latency using
lightweight mechanisms (e.g., Shenango [26], Arachne [28],
and Shinjuku [18]) that can bene�t I/O operations taking
tens of microseconds (e.g., adding an overhead of 0.55% for
�ash storage with service times in 10 µs). Moreover, new
transport protocols (e.g., Homa [23]) demonstrate that in-
network priority queues can bring down 99th-percentile
latencies within 2x of the ideal. In L-NIC, we plan to leverage
Homa.

6 CONCLUSION
In the past, accelerating applications meant faster CPUs and
clever cache mechanisms. Today, with almost all computa-
tion done at warehouse-scale, network latency is becoming
the bottleneck to distributed computing. It no longer makes
sense to think of the network as a peripheral hanging o� a
PCIe bus; packets need to be treated as �rst-class citizens
alongside memory transactions, and L-NIC is the �rst NIC
design to attempt to do so. Rather than throwing more CPUs
in the way, L-NIC tries to judiciously process messages in
a programmable pipeline, then starts executing on them as
soon as possible. We believe this is how future NICs will be
architected.
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