
21

A Distributed Algorithm to Calculate
Max-Min Fair Rates Without Per-Flow State

LAVANYA JOSE, Stanford University, USA

STEPHEN IBANEZ, Stanford University, USA

MOHAMMAD ALIZADEH,MIT CSAIL, USA

NICK MCKEOWN, Stanford University, USA

Most congestion control algorithms, like TCP, rely on a reactive control system that detects congestion, then

marches carefully towards a desired operating point (e.g. by modifying the window size or adjusting a rate).

In an effort to balance stability and convergence speed, they often take hundreds of RTTs to converge; an

increasing problem as networks get faster, with less time to react.

This paper is about an alternative class of congestion control algorithms based on proactive-scheduling:

switches and NICs “pro-actively” exchange control messages to run a distributed algorithm to pick “explicit

rates” for each flow. We call these Proactive Explicit Rate Control (PERC) algorithms. They take as input the

routing matrix and link speeds, but not a congestion signal. By exploiting information such as the number of

flows at a link, they can converge an order of magnitude faster than reactive algorithms.

Our main contributions are (1) s-PERC (“stateless” PERC), a new practical distributed PERC algorithm

without per-flow state at the switches, and (2) a proof that s-PERC computes exact max-min fair rates in a

known bounded time, the first such algorithm to do so without per-flow state. To analyze s-PERC, we introduce

a parallel variant of standard waterfilling, 2-Waterfilling. We prove that s-PERC converges to max-min fair in

6N rounds, where N is the number of iterations 2-Waterfilling takes for the same routing matrix.

We describe how to make s-PERC practical and robust to deploy in real networks. We confirm using realistic

simulations and an FPGA hardware testbed that s-PERC converges 10-100x faster than reactive algorithms

like TCP, DCTCP and RCP in data-center networks and 1.3–6x faster in wide-area networks (WANs). Long

flows complete in close to the ideal time, while short-lived flows are prioritized, making it appropriate for

data-centers and WANs.

CCS Concepts: • Networks→ Transport protocols; In-network processing; Network resources allocation;
Cloud computing; Data center networks;

Keywords: congestion control; max-min fairness; data center networks

ACM Reference Format:
Lavanya Jose, Stephen Ibanez, Mohammad Alizadeh, and Nick McKeown. 2019. A Distributed Algorithm

to Calculate Max-Min Fair Rates Without Per-Flow State. In Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, 2,
Article 21 (June 2019). ACM, New York, NY. 42 pages. https://doi.org/10.1145/3326135

Authors’ addresses: Lavanya Jose (contact author), 353 Serra Mall, Room 314, Stanford, CA 94305, USA; Stephen Ibanez, 353

Serra Mall, Room 314, Stanford University, Stanford, CA 94305, USA; Nick McKeown, 353 Serra Mall, Room 344, Stanford

University, Stanford, CA 94305, USA; Mohammad Alizadeh, 32 Vassar Street, 32-G920, MIT CSAIL, Cambridge, MA 02139,

USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

2476-1249/2019/6-ART21 $15.00

https://doi.org/10.1145/3326135

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

https://doi.org/10.1145/3326135
https://doi.org/10.1145/3326135

21:2 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Fig. 1. Typical convergence behavior for TCP, DCTCP, and s-PERC running on our NetFPGA testbed. Two
flows share a 10Gb/s link. The round-trip time (RTT) is 1ms.

1 INTRODUCTION
Cloud data-centers today host thousands of applications on networks interconnecting hundreds of

thousands of servers. A congestion control algorithm has to balance the needs of short flows, which

need low latency, and long flows, which need high throughput, regardless of other applications

sharing the network.

Cloud providers typically use reactive congestion-control algorithms inside and between their

data-centers. This class of algorithms, best represented by TCP, reacts to congestion signals, and

can take hundreds of RTTs to converge, even for simple topologies. Figure 1 illustrates the problem

in our 10Gb/s hardware testbed. Two servers send a TCP flow over a bottleneck link. After the

second flow is added (first vertical line), it takes TCP 400 RTTs to converge to a fair allocation

(second vertical line). Even DCTCP takes 250 RTTs.

In real networks, many flows are short-lived and the set of flows changes every millisecond,

if not more often, suggesting that instantaneous flow rates in today’s networks never have time

to converge and are far from optimal. As link speeds increase this problem becomes worse, since

flows can finish even faster. For example, at 100Gb/s a typical 1MB flow from a data-center search

workload (used in §8.2.2) can finish in 80µs, just a few RTTs; hardly enough time for an algorithm

to react.

An alternative would be to use scheduling algorithms like WFQ [16] or PGPS [40], which

instantaneously share link capacity fairly across all flows using a link. But maintaining per-flow

state is generally considered too expensive in data-center switch ASICs with limited on-chip

memory. For example, if a switch ASIC needs 8B of state for each flow, it would need 8MB for 1

million flows. A significant fraction of the chip would need to be reclaimed from lookup-tables and

the packet buffer, both of which are in high demand. Moreover, any per-flow state solution would

require a hard limit on the number of flows to be baked into silicon, limiting the scale. We would

prefer switches to avoid any per-flow state in the first-place.

Another approach, taken by FlowTune [41], is to calculate a fair rate allocation for each flow in

a centralized server, and schedule the flows to be sent at these rates. But a centralized scheduler is

a bottleneck in a large network, with a rapidly changing set of flows.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:3

We therefore seek fast congestion control algorithms that are practical, do not require per-flow

state, allowing them to scale to any number of flows, and are distributed, allowing them to scale

to any network size. The algorithms must converge quickly to fair rates for any number of flows.

They must remain stable and fast in the face of sudden changes in the traffic matrix. Finally, they

must be general enough to work for arbitrary topologies at WAN or DC scale.

Reactive algorithms: Why do reactive algorithms take hundreds of RTTs to converge? TCP (and

variants such as DCTCP [3], RCP [17], XCP [28], Timely [35]) were designed to primarily operate

at the end host with minimal knowledge of the network topology or current conditions. They do

not know the link capacities or the number of flows on the links. These decentralized algorithms

(usually) run on the end-host, where the algorithm measures congestion signals (e.g. packet drops

or ECN marks) to iteratively choose a sending rate by successive approximation. This class of

algorithms reacts to congestion signals and hence we call them reactive algorithms. They do not

know the correct rates but they know the direction in which to adjust. To remain stable, they must

take many small, cautious steps, and hence they take a long time to converge. At 100Gb/s most

flows could have finished long before reactive algorithms find the correct rates.

Proactive algorithms: Our approach is to use distributed proactive (rather than reactive) algo-

rithms to directly calculate the ideal flow rates. Building on previous PERC (Proactive Explicit

Rate Control) algorithms [26], our main contribution is a new, practical, scalable algorithm called

s-PERC. This is the first PERC algorithm that provably converges to max-min fair rates in known,

bounded time without needing to keep per-flow state.

Introducing a new congestion control algorithm like s-PERC into a network presents many

challenges. But as we have seen in recent years, cloud providers seem willing to invest the effort,

given their homogeneous infrastructure and single administrative domain. Recent programmable

switches make it practical to implement simple distributed algorithms at switches, that collect

information about flows proactively and act on it quickly.

The s-PERC algorithm is a deceptively simple distributed algorithm: End hosts send and receive

control packets that carry four fields (< 7B total) per link, and switches use these control packets

to locally calculate the exact max-min fair flow rate, using a constant amount of state (8B per link)

at the switch itself. s-PERC was designed to work with one particular fairness metric (max-min

fairness) because it is a widely-used objective for congestion control algorithms. We believe it

is possible to design proactive algorithms that use a different fairness metric and will converge

quickly, but we have not done so.

Convergence result: The tricky part is understanding why s-PERC always converges in bounded

time. To help our convergence proofs we introduce a family of centralized algorithms called

k-Waterfilling algorithms (§3.1). The well-known sequential water-filling algorithm [11] is the

special case when k = ∞. As we make k smaller, the algorithm becomes more parallel and

needs fewer iterations to compute max-min fair rates. To set the stage for s-PERC, the paper first

reviews an existing algorithm, called Fair , which uses per-flow state at the links. It is known

that by calculating local max-min fair rates at every link, Fair leads to a global max-min fair

allocation [43] (§4). Previous work shows that the convergence behavior of Fair can be analyzed

using 1-Waterfilling [42], the fastest and most parallel of our water-filling algorithms.

In this paper, we show that the convergence behavior of s-PERC can be analyzed using 2-

Waterfilling, the second most parallel water-filling algorithm. Specifically, we show that s-PERC is

guaranteed to converge to the correct max-min fair rate allocation within 6N rounds, where N is

the number of iterations 2-Waterfilling takes for the same routing matrix (§C.4). This is a tighter

bound than we can obtain using the standard water-filling algorithm (k = ∞), but looser than the

k = 1 bound for Fair . The intuition is that because Fair uses more state (specifically, per-flow

state at every link) it can be made more parallel and therefore converges faster. But s-PERC also

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:4 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

runs in parallel and can converge much faster than standard water-filling, despite requiring no

per-flow state at the links. Numerical simulations of a few thousand randomly-generated routing

matrices indicate that s-PERC converges 10-40% slower than Fair in practice, and the worst-case

convergence time for s-PERC was 2-3x faster than the 6N bound that we prove (§8.1). We evaluate

s-PERC using packet-level simulations with realistic workloads in §8.2.1 and demonstrate that it

converges an order of magnitude faster than existing reactive algorithms in data center networks,

and achieves close to ideal throughput for large flows, and near-minimum latency for the smallest

flows (§8.2.2). In WAN networks, s-PERC converges 1.3–6x faster than existing reactive algorithms.

We enhance the basic s-PERC algorithm in §7.1 to make it robust in real WAN or DC networks

(§8.1.2), and built a hardware prototype using the 40Gb/s NetFPGA SUME platform (§8.3).

2 DEFINITIONS
PERC algorithms figure out the max-min fair rate allocations by pro-actively exchanging messages

(control packets) with switches along the path, over multiple rounds. The flow allocations are

carried as explicit rates in the control packets.

We make the following assumptions about the network and operating conditions.

1. An arbitrary network withM links, with fixed link capacities denoted by vector c, carrying a
set of N flows.

2. AnM × N 0-1 routing matrix A = [al f] indicates which links a flow uses, i.e. al f = 1 iff flow f
uses link l .
3. Al⋆={ f | al f = 1} is the set of flows that use link l , and nl=|Al | is the number of flows that use

link l .
4. Similarly, A⋆f ={l | al f = 1} is the set of links, used by flow f .
5. Flow rates are only limited by link capacity, not by constraints at the source or destination.

6. At any instant, each flow has exactly one control packet in flight. The control packet goes

back and forth between the sender and receiver across the same set of links A⋆f as the flow’s data

packets.

7. Control packets are in flight as long as a flow is active, and the control packet is never dropped

or garbled. (We will relax this assumption later).

8. The control packet is only modified by the links; the end host does not modify the control

packet, except to signal that a flow is starting or ending.

9. There is no coordination between the links, and the arrival order of control packets at the links

can be arbitrary.

10. A flow’s control packet carries allocated rate x for each link along its path. When a sender

receives a control packet, it sets the sending rate equal to the minimum allocated rate in the control

packet.

11. Control packets have a bounded round trip time. We define a round to be the maximum round

trip time of all control packets; i.e. in one round, a link is guaranteed to see at least one control

packet for every flow crossing it.

12. We define convergence time as the time from when the set of flows stabilizes until every flow

has been allocated its correct max-min fair rate on every link.

2.1 Max-Min Fairness
Definition 1. A flow f is bottlenecked at link l if (i) the capacity of link l is fully utilized, and (ii)

flow f gets the maximum rate of all flows that cross link l . A rate allocation is max-min fair iff
every flow is bottlenecked at some link. There always exists a unique max-min fair allocation [31].

Example: Consider the network in Figure 2 withM=3 links carrying N=2 flows. The max-min fair

allocation is 12Gb/s for (green) flow 2, which is bottlenecked at link l12, and 18Gb/s for (blue) flow

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:5

Link	l20	

20	Gb/s	

Link	l30	

30	Gb/s	

Link	l12	

12	Gb/s	

Fig. 2. A Running example. Flow 2 (green) is bottlenecked to 12Gb/s at link l12; flow 1 (blue) is bottlenecked
to 18Gb/s at link l30.

1, which is bottlenecked at link l30. Link l20 has spare capacity since (green) flow 2 is bottlenecked

elsewhere.

Notation: Vector x∗ is the max-min fair rate allocation for the flows. The max-min fair rate of a

link is the max-min fair allocation of flows that are bottlenecked at the link. This is well defined for

links whose capacities are fully utilized, i.e. {l | (Ax∗)l = cl }. If a link is not fully utilized, we say

its max-min rate is unbounded. Vector r∗ denotes the max-min fair rate of the links.

3 PROACTIVE (PERC) ALGORITHMS
Our main contribution is s-PERC, a distributed PERC algorithm that does not maintain per-flow

state at the switches.

In order to motivate s-PERC, we start with an existing algorithm called Fair which requires

per-flow state, then describe an algorithm called n-PERC where we naively get rid of the per-flow

state. We will see that n-PERC runs into transient problems that delay convergence. By fixing

the transient problem in n-PERC, we arrive at the s-PERC algorithm that converges in a known

bounded time.

Only Fair and s-PERC are proven to converge to max-min in a known bounded time. Simulations

suggest that n-PERC converges but can take arbitrarily long because of the transient problems.

The three algorithms have a common template. The control packet of a flow carries an allocated

rate x and a bottleneck rate b for each link along the flow’s path. These are calculated when the

packet is updated by a link and saved in the control packet at the end of the update.

Links update control packets in four steps. Step 1: The link assumes the flow is going to be

bottlenecked here and computes bottleneck rate b for the flow, which is the link’s estimate of its

max-min rate r∗ based on local information. Step 2: The link determines e , the lowest bottleneck
rate that the flow gets from any other link in the network. We call e the limit rate for the flow. Step
3: The link calculates the allocated rate x for the flow, as the minimum of {b, e}. Step 4: Finally,
the link updates its local state, and the control packet, and forwards the control packet. The source

end-host updates the actual sending rate of the flow each time a control packet is received. The

sending rate is set to the minimum allocated rate at any link (min x).
Each algorithm differs in the amount of state it maintains at the links, and how it computes

the bottleneck rate. Fair maintains per-flow state, whereas n-PERC and s-PERC do not. Fair uses
per-flow state to store the limit rates of all flows at a link, and it uses this state to compute a locally

max-min fair bottleneck rate b for a flow upon receiving its control packet. n-PERC relies instead

on two aggregate counters to calculate b: NumB, the number of flows estimated to be bottlenecked

at the link; SumE, the sum of allocated rates of flows estimated to be bottlenecked elsewhere. The

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:6 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

rate calculation is based on the following characterization of a link’s actual max-min fair rate:

r∗ =
c − SumE∗

NumB∗
, (1)

where NumB∗ is the number of flows actually Bottlenecked at the link, and SumE∗ is the sum
of max-min fair rates of flows not bottlenecked at the link, but bottlenecked Elsewhere. In other

words, for any link that is fully used, every flow bottlenecked at the link gets an equal share of

the remaining capacity, after we remove the allocations of flows that are not bottlenecked at the

link. This folows from Definition 1 of max-min fairness. Upon receiving a flow’s control packet, an

n-PERC link uses its estimates, SumE and NumB, to calculate the bottleneck rate in one-shot as

b=(c − SumE)/NumB.
Without per-flow state, inaccurate estimates of which flows are bottlenecked at a link lead to

transient problems in n-PERC, where a link propagates a bottleneck rate that is too low and causes

other links to make errors. s-PERC fixes this problem by keeping a bit more state at each link:MaxE,
an estimate of the maximum bandwidth allocated to flows that are assumed to be bottlenecked

elsewhere. As shown later, a link can useMaxE to determine when it is safe to propagate bottleneck

rate information to other links, and this is enough to ensure a bounded convergence time. Table 1

summarizes the the information carried in the control packets (second column, bold) and the state

maintained at the links by each algorithm (third column.) The information in the control packet

is carried for each link, and directly reflects the variables used by the link to compute the flow’s

latest allocation.

Table 1. Summary of variables used by PERC algorithms in this paper. Bold variables are carried by the
control packet, per-link.

PERC Algorithm

Variables

(Packet State)
Link State

Convergence

Time (rounds)

Fair [43] b, e,x e , per flow 4N1

n-PERC [15] b, e,x, s SumE,NumB
bound

unknown

s-PERC b, e,x, s, i SumE,NumB
MaxE,MaxE ′

6N2

Notation. b: bottleneck rate, e : limit rate, x : allocated rate, s : bottleneck state ∈{E, B},

i: ignore bit (i=0 to propagate b), Nk : number of iterations k-Waterfilling takes.

3.1 k-Waterfilling algorithms
Our goal is to find a convergence bound for s-PERC. We could easily find an upper-bound O(N)
(for Fair and s-PERC) if there are N bottleneck links. We are going to find a tighter bound with

the help of k-Waterfilling algorithms, a family of centralized iterative algorithms that compute

max-min fair allocations, defined in Algorithm 1. The algorithm takes as input a fixed routing

matrix and a vector of link capacities. In each iteration, a k-Waterfilling algorithm computes a fair

share rate for each link (line 5), and picks a subset of the bottlenecked links (a function of k) to
remove (lines 6–8). It assigns the fair share rate of the selected bottlenecked links to their flows

(lines 9–11), and removes the links and the flows from the network (lines 12–17). The rates of the

flows that are removed are subtracted from the remaining link capacities (line 13), and this yields

new fair share rates in the next iteration. Which links are removed depends on k , as described
below. The algorithm terminates when there are no more flows.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:7

Algorithm 1 The k-Waterfilling algorithm to compute max-min rates.

1: A : routing matrix, c : vector of link capacities ▷ Input

2: n← A1 ▷ Number of flows per link

3: x← 0 ▷ Rate allocation per flow

4: while |n | > 0 do
5: r← c/n ▷ Compute fair share rate

6: if k = ∞ then L ← {l | r[l] = min r} ▷ Select links with lowest rates globally

7: else
8: S ← (AAT)k ▷ S [l,m] > 0 iff links l,m within distance k in Link Dependency Graph

9: L ← {l | r[l] = min{m |S [l,m]>0} r[m]} ▷ Select links with lowest rates in k-neighborhood

10: for all l ∈ L do ▷ Set of links to remove

11: for all f ∈ A[l, ·] do
12: x[f] ← r[l] ▷ Assign fair share rate of link to flow

13: F ← {f | x[f] > 0} ▷ Set of flows to remove

14: c← c − Ax ▷ Subtract rate of flows to remove (F) from capacities of all links on their path

15: c← c(L), ▷ Remove L, F from vector of link capacities,

16: A← A(L; F) ▷ ... routing matrix,

17: x← x(F) ▷ ... and vector of rate allocations.

18: n← A1 ▷ Update vector of number of flows per link

To understand which links (and their flows) are removed in each iteration, it helps to consider an

alternate representation that we call the Link Dependency Graph. Each vertex represents a link, and

there is an edge between two vertices if and only if the corresponding links share a flow. Figure 3

shows an example Link Dependency Graph, where vertices 1 and 2 share an edge because links 1

and 2 share a (blue) flow.

In each iteration, the fair share rate of a link is defined to be c/n, where c is the remaining link

capacity, and n is the number of flows using the link (line 5). The k-Waterfilling algorithm removes

a link in an iteration if it has the lowest fair share rate of all links within distance k in the Link

Dependency Graph— links that we call kth-degree neighbors (Lines 7–8, noting that AAT indicates

adjacent links in the Link Dependency Graph).

Figure 4 (left side) shows the progression of the 1-Waterfilling algorithm for the example. Link 1

is removed in the first iteration because its first-degree neighbor, link 2, has a fair share rate that is

less than or equal (both fair share rates are 5Gb/s). On the other hand, link 2 is not removed in the

first iteration because its fair share rate is larger than its first-degree neighbor, link 3.

All k-Waterfilling algorithms compute max-min fair rates in a finite number of iterations.

Theorem 2 (k-Waterfilling Correctness). The k-Waterfilling algorithm (Algorithm 1) terminates
after a finite number of iterations Nk , and all flows in the network are allocated their max-min fair
rates.

Proof. See Appendix A.1. □

While all k-Waterfilling algorithms converge to the same, unique set of max-min fair rates, they

differ in how they get there. k-Waterfilling algorithms partition the set of links in the network,

based on the iteration in which a link is removed. The number and sequence of partitions depends

on k . For example, in Figure 4, there are N1=2 sets for 1-Waterfilling, and the first set of bottleneck

links (gray links in the first row) contains three links, 1, 3 and 4, each of which have the lowest fair

share rate in their k=1 neighborhood. But if k=2, there are N2=3 sets, and the first set has two links,

3 and 4, whose fair share rate is the lowest of second-degree neighbors.

It should be clear that 1-Waterfilling converges in the fewest iterations because local calculations

depend only on the immediately adjacent neighbor. At the other extreme, k=∞ (the serial centralized

waterfilling algorithm introduced by Bertsekas [11]), takes the longest to converge. In each iteration

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:8 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

C = 10 Gb/s
N = 2
R = 5 Gb/s

C = 15 Gb/s
N = 3
R = 7 Gb/s

C = 3 Gb/s
N= 1
R = 3 Gb/s

Link	1	 Link	2	 Link	3	
C = 1 Gb/s
N= 1
R = 1 Gb/s

Link	4	

(a) Topology and set of flows.

3	1	 2	 4	

(b) Link Dependency Graph.

Fig. 3. Example network and Link Dependency Graph. There is an edge between vertices 1 and 2 in the Link
Dependency Graph because links 1 and 2 share a common (blue) flow. We say that link 2 and link 3 and first-
and second-degree neighbors respectively, of link 1.

2-Waterfilling	

1	
10/2=5	 15/3=5	 3/1=3	 1/1=1	

2	
10/2=5	 12/2=6	

3	
7/1=7	

3	1	 2	 4	

1	 2	

2	

1-Waterfilling	

1	
10/2=5	 15/3=5	 3/1=3	 1/1=1	

2	
7/1=7	

3	1	 2	 4	

2	

Fig. 4. k-Waterfilling (k=1 and k=2) for example in Figure 3. Gray links have the lowest fair share rates in
their k-neighborhood and are removed at the end of the iteration.

a link is removed if it has the lowest fair share rate out of all links that remain in the iteration, not

just its neighbors.

k-Waterfilling algorithms are useful for proving properties of the Fair and s-PERC algorithms

because, as we will show, flows converge to their correct max-min allocations in these algorithms

in exactly the same sequence that they are removed in a corresponding k-Waterfilling algorithm.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:9

We can therefore prove convergence bounds for these distributed PERC algorithm in terms of the

appropriate k-Waterfilling algorithm, as shown by the next two theorems.

Theorem 3 (Convergence of Fair). With Fair , given a fixed (A, c), once all flows have been seen at
their links, every flow converges to its max-min fair rate in less than or equal to 4N1 rounds, where N1

is the number of iterations that 1-Waterfilling takes for (A, c).

Proof. See [43] or Appendix B.2. □

Theorem 4 (Convergence of s-PERC). With s-PERC, given a fixed (A, c), once all flows have been
seen at their links, every flow converges to its max-min fair rate in less than or equal to 6N2 rounds,
where N2 is the number of iterations that 2-Waterfilling takes for (A, c).

Proof. See Appendix C.4. □

In PERC algorithms, a link propagates its bottleneck rate information to adjacent links in the

Link Dependency Graph via the control packets of the flows that it shares with those links. This

information helps the links along the path of a flow estimate where the flow is bottlenecked,

enabling them to update their own bottleneck rates appropriately. When a flow has converged

to the correct max-min fair (sending) rate, its bottleneck link has calculated a bottleneck rate

equal to the flow’s max-min rate, and every other link has calculated a higher bottleneck link rate

(because the flow is not bottlenecked there). The crux of Theorems 3 and 4 is that a link in Fair
converges (i.e. all of its flows converge) if it has the lowest fair share rate (c/n) among its first-degree

neighbors in the Link Dependency Graph, whereas in s-PERC the link must also have the lowest
fair share rate of its second-degree neighbors. The main difference between Fair and s-PERC is

in their bottleneck rate calculations and how (and when) they propagate the rate to other links.

Fair always calculates a bottleneck rate greater than or equal to its fair share rate, c/n. Fair can do

this because it maintains per-flow state for the limit rates of the flows and can therefore perform

a locally max-min bottleneck rate calculation at each link (see §4). Informally, the consequence

is that a link, say l , that has the lowest fair share of its first-degree neighbors, converges because
every first-degree neighbor of l will compute a bottleneck rate that is greater than or equal to link

l ’s fair share rate. Therefore, every flow crossing link l will be classified correctly at both link l (as
bottlenecked here) and the first-degree neighbors of l (as bottlenecked elsewhere).

In s-PERC, however, there is no guarantee that the bottleneck rate computed at a link is greater

than or equal to its fair share rate. And so to protect against propagating rates that might confuse a

neighbor, s-PERC ensures that the rate propagated to other links is greater than or equal to the link’s

fair share rate (see §6.2). This means that if a link l has the lowest fair share rate of its first-degree
neighbors only, its flows are allocated this rate at link l but not necessarily at other links along

their path (the first-degree neighbors of link l), because the bottleneck rate computed at those links

might be lower than link l ’s fair share rate. If, however, link l has the lowest rate of both its first-

and second-degree neighbors, the first-degree neighbors of l will allocate the correct rate, because
the rates propagated to them by their neighbors (the second-degree neighbors of link l) is at least
link l ’s fair share rate.
We discuss the connection between Fair and s-PERC to the 1-Waterfilling and 2-Waterfilling

algorithms respectively in more detail in §6.2.

4 FAIR: A MAX-MIN PERC ALGORITHMWITH PER-FLOW STATE
We start with Fair , which uses per-flow state and follows from a well-known result [43] that

computing local max-min fair allocations at every link can lead to the global max-min fair allocation

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:10 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Algorithm 2 Fair alg. at link l to process control packet of flow f .

1: b, x : vector of bottleneck and allocated rates in control packet (initially,∞, 0, respectively)

2: e : vector of limit rates at link (initially empty)

3: e[f] ← ∞ ▷ Start of local max-min fair calculation. Assume flow f is not limited.

4: Sort e and let e(i) denote ith largest rate

5: SumE ← 0, NumB ← |e |, i ← 0

6: while (c − SumE)/NumB > e(i) do
7: SumE ← SumE + e(i)

8: NumB ← NumB − 1
9: i ← i + 1
10: b ← (c − SumE)/NumB ▷ End of local max-min calculation

11: b[l] ← ∞ ▷ Assume the link’s own bottleneck rate is∞ to get limit rate

12: e ← min b
13: x ← min (b, e)
14: b[l] ← b, x[l] ← x ▷ Save variables to packet and link

15: if flow is leaving then del e[f] ▷ Remove flow f from vector of limit rates

16: else e[f] ← e

for the network.
1 Fair and its convergence analysis follow directly from existing work by Ros-Giralt

et al. [42–44]. The Fair control packet carries for each link, a bottleneck rate b and the bandwidth

allocated to the flow by the link, x . The link uses per-flow state to store the limit rates of all flows.

See Algorithm 2 for a complete description of the control packet and the algorithm. Fair provably
converges to the global max-min fair rates in 4N1 rounds, where N1 is number of iterations that

1-Waterfilling takes for the given set of flows and links.

4.1 The local max-min fair rate
Fair calculates the local max-min fair share rate as follows: a link starts by assuming all flows are

bottlenecked here (line 5 in Algorithm 2) with initial fair rate c/n. The link sorts flows by their

limit rates, and iteratively moves flows out of the bottlenecked set (lines 7–8) until the resulting

fair rate (c − SumE)/NumB no longer exceeds the limit rate of the flow (line 6). Eventually, the fair

share rate at a link uniquely solves:

b =
c −

∑
f ∈Eb ef
|Bb |

, (2)

where Eb = { f | ef < b} is the set of flows with limit rates smaller than b, and Bb = { f | ef ≥ b}
is the set of flows with limit rates at least b. The rate b is the max-min rate for the link, assuming

each flow that uses the link crosses one additional link whose capacity is equal to the flow’s limit

rate. The flow that is being updated is assumed to have limit rate e = ∞. This ensures that Eq. (2)
has a unique solution.

4.2 The Fair Algorithm in Action
Let’s walk through an example to understand how the rates evolve in the Fair algorithm (Table 2)

in our running example from Figure 2. Later, we will contrast it with how the rates evolve (badly)

when we don’t have per-flow state.

The numbers in parentheses refer to the index of the update in table 2. (1) Flow 1 is first seen at

link l20. The link assumes the flow is not limited elsewhere, computes a bottleneck rate of 20Gb/s,

1Fair has minor differences from d-CPG [43], as described in Appendix B.1. We present Fair instead because it is easier to

contrast with the two PERC algorithms, since they have a common template.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:11

Table 2. Control packet updates for the first two rounds of Fair .

Rounds Update Flow / link b e x
1 1 1 l20 20 ∞ 20

2 l30 30 20 20

3 2 l30 15 ∞ 15

4 l12 12 15 12

2 5 2 l30 15 12 12

6 l12 12 15 12

7 1 l20 20 30 20

8 l30 18 20 18

and allocates it to the flow. (2) The flow is then seen at link l30. The link computes a bottleneck rate

of 30Gb/s, sees that the flow is limited to 20Gb/s, and allocates 20Gb/s.

(3) When flow 2 is seen at link l30, the link knows that one other flow is limited to 20Gb/s. It

assumes flow 2 is not limited (e=∞), and a local max-min fair calculation yields a bottleneck rate of

15Gb/s (SumE = 0, NumB = 2 in line 9.) In terms of Eq. 2, both flows are in Bb , with limit rates

at least 15Gb/s. The bottleneck rate 15Gb/s is smaller than the actual limit rate (∞), and the link

allocates 15Gb/s to flow 2. (4) Next, the flow is seen at link l12, where its limit rate 15Gb/s exceeds

the bottleneck rate 12Gb/s, and the flow gets it correct max-min fair allocation. A key property

of the Fair algorithm is that the bottleneck rate calculation at each link is locally max-min fair, a
property lacking in algorithms that don’t use per-flow state. During update (3), given a limit rate of

20Gb/s for flow 1 and ∞ for flow 2, an allocation of the bottleneck rate 15Gb/s for both flows is

(locally) max-min fair. They are both bottlenecked at the link, the link is fully used and both flows

get the maximum rate.

As Table 2 shows, at the end of the second round of updates, when each flow has been updated

at each link twice, Fair converges to the max-min rates for flow 2. Flow 1 needs one more update

at link l20 to be allocated its max-min rate of 18Gb/s (not shown).

4.3 Convergence of the Fair Algorithm
Let F and L denote the set of flows and links removed in the first iteration of 1-Waterfilling. We

can show that within a round every flow f ∈ F is allocated a bottleneck rate at least x∗f . This
follows from (i) the property of the local max-min fair calculation (it is at least c/n), and (ii) the

1-Waterfilling property that if a flow is removed by link l , then the fair share rate of any link that

carries f must be at least cl/nl = x∗f . By the end of round two, the limit rate of all flows at every link

l ∈ L is at least cl/nl , because any flow that the link carries is in F , and such flows get a bottleneck

rate of at least cl/nl at all other links on their paths. Therefore, all flows are bottlenecked at link

l ∈ L with local max-min fair rate cl/nl . In the third round, flows in F pick up their local max-min

rate from links in L, and they are allocated this rate by the remaining links by the fourth round.

Thus after four rounds, the flows in F and the links in L have converged. Next we remove these

flows and links and repeat the same analysis. Eventually all flows are updated correctly within 4N1

rounds. See Appendix B.2 for a formal proof.

5 N-PERC: A NAIVE PERC ALGORITHMWITHOUT PER-FLOW STATE
In our search for a stateless algorithm, the n-PERC algorithm is an obvious place to start. Given a

max-min fair allocation, each link carries two sets of flows, one set of flows is Bottlenecked at the

link, which we denote using B∗, the other set of flows is not bottlenecked at l , but is bottlenecked

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:12 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Algorithm 3 n-PERC. Link l processes control packet of flow f .

1: b, x, s : vector of bottleneck, allocated rates and bottleneck states in packet (initially∞, 0, E, respectively)

2: SumE , NumB : sum of limit rates of E flows, and number of B flows at link (initially 0 each)

3: if s[l] = E then ▷ Assume flow is not limited, for bottleneck rate calculation

4: s[l] ← B

5: SumE ← SumE − x[l]
6: NumB ← NumB + 1
7: b ← (c − SumE)/NumB
8: b[l] ← ∞ ▷ Assume the link’s own bottleneck rate is∞

9: e ← min b
10: x ← min (b, e)
11: b[l] ← b, x[l] ← x ▷ Save variables to packet

12: if flow is leaving then NumB ← NumB − 1 ▷ Remove flow f
13: else if e < b then
14: s[l] ← E

15: SumE ← SumE + x
16: NumB ← NumB − 1

Elsewhere, E∗. This was implicit when we characterized the max-min rate of a link as (reproducing

Eq. (1) in §3):

r∗ =
c − SumE∗

NumB∗
.

In n-PERC, each link aggregates per-flow state into two variables: SumE is the sum of allocated

rates of flows estimated to be in E∗;NumB is the number of flows estimated to be inB∗. In other words,
these are estimates of SumE∗ and NumB∗. The control packet carries for each link, a bottleneck

rate, b; the bandwidth allocated to the flow by the link, x ; and a 1-bit variable, s ∈ {B,E}, indicating
whether or not the flow is believed to be bottlenecked at this link. As shown in Algorithm 3, upon

receiving a control packet, links use the above equation to compute a bottleneck rate (line 7),

replacing the actual values SumE∗ and NumB∗ by the estimates SumE and NumB, respectively, to
get:

b =
c − SumE

NumB
. (3)

The link then compares the bottleneck rate with the latest limit rate of the flow and re-classifies

the flow into E or B accordingly (lines 13–16 if E, otherwise B by default because of lines 3–6). In

other words, in the n-PERC algorithm, instead of maintaining per-flow state, the link determines E
and B (estimates of E∗ and B∗) based on the state carried in the control packets. Therefore, SumE
and NumB are also determined by the control packet state.

5.1 The n-PERC Algorithm in Action
There are cases where n-PERC converges very slowly. The following example illustrates the problem;

we will see that it is the link with the lowest max-min rate that struggles to accurately identify its

bottleneck flows and slows down the convergence.

Let us walk through the example in Table 3. We will use the same topology and workload as for

Fair (Figure 2). Examining the first four updates will be sufficient for the discussion that follows.

The numbers in parentheses refer to the update in Table 3. The allocations start off the same as

Fair . (1, 2) Flow 1 is first seen at link l20 and then link l30. It is classified into B at the first link, and

allocated 20Gb/s, and classified into E at the second link, and allocated its limit rate 20Gb/s, which

is less than the bottleneck rate 30Gb/s. Now things start to differ from Fair . (3) When flow 2 is first

seen at link l30, the link knows that flows in E (flow 1) have been allocated 20Gb/s. It assumes flow

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:13

Table 3. Control packet updates for the first three rounds of n-PERC.

Rounds Update Flow / link b e x s
1 1 1 l20 20 ∞ 20 B

2 l30 30 20 20 E

3 2 l30 10 ∞ 10 B

4 l12 12 10 10 E

2 5 2 l30 10 12 10 B

6 l12 12 10 10 E

7 1 l20 20 30 20 B

8 l30 15 20 15 B

3 9 2 l30 15 12 12 E

10 l12 12 15 12 B

11 1 l30 18 20 18 B

12 l20 20 18 18 E

2 is not limited (NumB=1) and uses Eq. (3) with NumB=1 and SumE=20 to compute a bottleneck

rate of b=10Gb/s. Since the flow has not been seen anywhere else yet, its limit rate is∞, and the

link classifies the flow into B, allocates the bottleneck rate 10Gb/s (bolded in table), and updates

the control packet to reflect this. This is different from Fair , which computed a bottleneck rate of

b=15Gb/s and allocated x=b=15Gb/s to the flow.

(4) When flow 2 is next seen at its actual bottleneck link l12, its limit rate is e=10Gb/s, which is

the bottleneck rate propagated by link l30 (bolded in table). This is lower than the link’s correct

bottleneck rate b=12Gb/s and the link fails to recognize its bottleneck flow. The link assumes the

flow is bottlenecked elsewhere and allocates only 10Gb/s. This is a problem because despite having

the lowest max-min rate of all links, link l12 cannot immediately recognize flow 2 as a bottlenecked

flow.

5.2 Transient Problems With n-PERC
The difference between n-PERC and Fair gives us insight into why it is hard to bound n-PERC’s

convergence time. If we consider flow 2’s update at link l30 (where, in update (3), it is labeled B and

allocated b=10Gb/s) and the subsequent update at l12, (where it is labeled E and allocated e=10Gb/s),
two transient problems with n-PERC become apparent.

1. Sub-optimal local rates: The first problem is that the B flows are allocated a lower rate than

the locally max-min fair rate. To see this, consider the rate allocation at link l30 at the end of update
3. Link l30 considers flow 1 bottlenecked elsewhere to 20Gb/s and flow 2 bottlenecked here to

10Gb/s. A B flow is allocated less than an E flow, which should not happen. n-PERC cannot avoid

this problem, because link l30 does not know the rates of individual E flows. It only knows that

their total rate is SumE = 20Gb/s. Thus it has no way of knowing whether the flows in E have a

rate lower or higher than its estimated bottleneck rate of 10Gb/s.

2. Bad bottleneck rate propagation: The second problem is that when a flow’s sub-optimal

bottleneck rate is propagated to its actual bottleneck, the true bottleneck link may not realize the

flow is bottlenecked. For example, flow 2 is actually bottlenecked at link l12, but picks up a rate of

b=10Gb/s from link l30, which becomes its limit rate at l12. At l12, since the limit rate e=10Gb/s is
lower than the bottleneck rate b=12Gb/s, the flow is wrongly classified into E and allocated only

e=10Gb/s. Link l12 does not immediately recognize the flow as a bottleneck flow and must wait

until update 9, when l30’s bottleneck rate for flow 2, b=15Gb/s, is high enough.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:14 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

In comparison, the Fair algorithm does not propagate bad rates. Since link l12 has the lowest
max-min rate 12Gb/s, any other link has at least 12Gb/s available for each of its flows, including

l12’s bottleneck flows. So the local max-min fair rate at every other link is at least 12Gb/s. Notice

that the (last seen) limit rates of the flows at link l30 during update 3 are identical for both the Fair
algorithm and n-PERC. Yet, while Fair computes bottleneck rate 15Gb/s, which is higher than l12’s
max-min fair rate, n-PERC computes a bottleneck rate that is lower. A local max-min fair rate is

always a good bottleneck rate and high enough to propagate (see proof of convergence of Fair in
Appendix B.2). But it is impossible to calculate a locally max-min fair rate without storing the rate

of every flow.

Despite n-PERC’s transient problems, extensive numerical simulations suggest that the algorithm

still eventually stabilizes (see §8.1), but there is no known upper bound for how long it can take. A

similar algorithm has been proved to stabilize eventually [15], but it has no upper bound either.

6 S-PERC: A STATELESS ALGORITHMWITH KNOWN CONVERGENCE TIME
s-PERC overcomes n-PERC’s slow convergence problem by not propagating a bottleneck rate if it

thinks it might be too low. Clearly, a link should propagate the bottleneck rate once it is correct

and equals the max-min rate. But if the bottleneck rate is not yet correct, especially if it suspects a

flow is bottlenecked at a different link with a lower max-min rate, it would be better to say that the

flow is not limited here. This is the idea behind s-PERC.

s-PERC maintains a new variable at each link calledMaxE, which is an estimate of the maximum

bandwidth allocated to a flow assumed to be in E∗. s-PERC propagates a bottleneck rate b only

when b ≥ MaxE. Why does this work? The bottleneck rate is just the remaining capacity after

removing allocations of all flows in E, (i.e. c − SumE), divided evenly among the flows in B. If
b < MaxE, then a flow in E has been allocated more than the bottleneck rate (as in the n-PERC

example) and that flow in E may need to be reclassified into B. In other words, if b < MaxE then

we have misclassified the flows in E, and we should not propagate the low bottleneck rate.

Algorithm 4 describes the s-PERC algorithm running at the links, each time a control packet

is received. Algorithm 5 is run periodically every round. The control packet now carries a new

per-link field, called an ignore bit i, which is set if the link wants the bottleneck rate to be ignored,

and say instead, that the flow is not limited at the link. The remaining fields b, x, and s are the
same as n-PERC. The state maintained by the link includes SumE and NumB (same as n-PERC)

and two new variables,MaxE andMaxE ′, which are used to estimate the maximum allocation of

a flow in E at any time: maxf ∈E xf . s-PERC does not track the exact maximum because it would

require per-flow state [5].

The per-packet algorithm at the link is similar to n-PERC except for the following. The link

uses the ignore bits to infer p, the “propagated bottleneck rate” of other links, that is, the rate

that the flow is limited to at other links. If the ignore bit is set for a link j (i[j] = 1), it is assumed

that the flow is not limited at that link, p[j] = ∞, otherwise the flow is assumed to be limited to

the bottleneck rate, p[j] = b[j] (lines 10–11). The link sets the flow’s limit rate e to be the lowest
propagated bottleneck rate from other links. If there is no other link, or none of the other links

propagates a bottleneck rate, the flow’s limit rate is set to e = ∞ (lines 12–13). To avoid propagating

too low a rate, if b < MaxE, it sets the ignore bit in the control packet (line 16).

The new variables, MaxE and MaxE ′ are updated when a flow with a higher limit rate is

classified into E (lines 21–22 in Algorithm 4), and they are periodically reset at the end of each

round (Algorithm 5). This simple algorithm ensures thatMaxE is always greater than or equal to

the largest allocation of a flow in E (Lemma 9). Further, Lemma 10 proves that if the maximum

value stabilizes at time t , thenMaxE correctly reflects it within 2 rounds.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:15

Algorithm 4 s-PERC: link l processing control packets for flow f .
Differences from n-PERC are highlighted.

1: b, x, s : vector of bottleneck, allocated rates, bottleneck states in packet (initially,∞, 0, E, respectively)

2: i: vector of ignore bits in packet (initially, 1)

3: SumE , NumB : sum of limit rates of E flows, and number of B flows at link

4: MaxE , MaxE′: max. allocated rate of flows classified into E since last round (and in this round, respectively) at link

5: if s[l] = E then ▷ Assume flow is not limited, for bottleneck rate calculation

6: s[l] ← B

7: SumE ← SumE − x
8: NumB ← NumB + 1
9: b ← (c − SumE)/NumB
10: foreach link j :
11: if i[j] = 0 then p[j] ← b[j] else p[j] ← ∞ ▷ Propagated rates

12: p[l] ← ∞ ▷ Assume the link’s own propagated rate is∞

13: e ← min p
14: x ← min (b, e)
15: b[l] ← b, x[l] ← x ▷ Save variables to packet

16: if b < MaxE then i[l] ← 1 else i[l] ← 0 ▷ Indicate if rate b[l] should be ignored.

17: if flow is leaving then NumB ← NumB − 1 ▷ Remove flow f
18: else if e < b then
19: s[l] ← E

20: SumE ← SumE + x
21: NumB ← NumB − 1
22: MaxE ← max(x, MaxE); MaxE′ ← max(x, MaxE′).

Algorithm 5 Timeout action at link l for s-PERC, every round

1: MaxE ← MaxE′; MaxE′ ← 0.

Table 4. Control packet updates for first three rounds of s-PERC.2

Rounds Update Flow / link MaxE b e x s i
1 1 1 l20 0* 20 ∞ 20 B

2 l30 0* 30 20 20 E

3 2 l30 20 10 ∞ 10 B 1

4 l12 0* 12 ∞ 12 B

2 5 2 l30 20 10 12 10 B 1

6 l12 0 12 ∞ 12 B

7 1 l20 0 20 30 20 B

8 l30 20 15 20 15 B 1

3 9 2 l30 0* 15 12 12 E

10 l12 0 12 15 12 B

11 1 l30 12 18 20 18 B

12 l20 0 20 18 18 E

6.1 s-PERC in Action
Let’s walk through an example to understand how the rates evolve in the s-PERC algorithm (Table

4). We will use the same topology and workload we used for n-PERC and Fair (Figure 2).

2
Note asterisk indicates MaxE was reset before the update, and i=0 if not shown .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:16 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

The numbers in parentheses refer to the update Table 3. (1, 2) Flow 1 is first seen at link l20 and
then link l30. It is classified into B at the first link, and allocated 20Gb/s, and classified into E at the

second link, and allocated its limit rate 20Gb/s, which is smaller than the bottleneck rate 30Gb/s.

So far the allocations are exactly the same as the Fair and n-PERC algorithms.

(3) The next update is the same as in n-PERC, up until where the link decides to not propagate the

rate. When flow 2 is first seen at link l30, the link uses Eq. (3) —with NumB=1, and SumE=20— to

compute a bottleneck rate of b=10Gb/s. Since the the actual limit rate is∞, the link classifies the flow

into B, allocates the bottleneck rate 10Gb/s, and updates the control packet to reflect this. However,
becauseMaxE=20Gb/s is higher than b, the link guesses that b may be too low to propagate to the

next link and additionally sets the ignore bit to 1 in the control packet.

(4) When flow 2 is next seen at its actual bottleneck link l12, its bottleneck rate 10Gb/s from link

l30 is ignored and the link assumes flow 2 is not limited (e=∞). The link computes a bottleneck rate

b=12Gb/s. Since the limit rate is greater, the link correctly assumes the flow is bottlenecked at the

link and allocates b=12Gb/s. By not propagating its bad bottleneck rate, link l30 enables link l12 to
immediately identify its bottleneck flow 2.

The allocation at link l30 for flow 2 is still 10Gb/s however. It is not until after update (8) (when

both flows are B) that the bottleneck rate at link l30 for flow 2 increases from b=10Gb/s to b=15Gb/s.
(9) During update (9), b=15Gb/s exceeds e=12Gb/s and flow 2 is correctly classified into E at link l30.
We say the flow 2 has converged at this point, since we can show that it is forever marked B at its

bottleneck link l12, E at link l30 and allocated exactly its max-min fair rate 12Gb/s at both links.

We skip the discussion of flow 1, though interested readers may refer to table 4 for details.

6.2 Convergence of the s-PERC algorithm
As the previous example demonstrates, an s-PERC link may calculate a bottleneck rate that is

too low. If propagated, the bottleneck rate would confuse its neighbors and potentially prevent

convergence. The following important property of s-PERC, proved in Appendix C.1, allows it to

converge in a bounded time where n-PERC cannot:

Lemma 5 (Good Rate Propagation). The bottleneck rate propagated by a link is at least c/n,
the fair share rate of the link, irrespective of the limit rates of the flows seen at the link.

This property allows us to show that flows removed in the first-iteration of 2-Waterfilling will

converge immediately at all their links (within a bounded number of rounds).

To see why flows removed in the first-iteration of 2-Waterfilling will converge immediately,

recall that we define a flow to have converged to the correct rate when (and only when) it has been

allocated the correct max-min fair rate at all of its links, and it has been correctly classified into

sets B or E.
Let’s see how this happens by considering one flow, f , that is removed in the first-iteration of

2-Waterfilling because it is bottlenecked at link k . Let l be some other link on flow f ’s path which

has a higher fair share rate than link k (see Figure 5). Given that link k has the lowest fair-share rate

of its second-degree neighbors, and any link on the path of a flow carried by link l is, by definition,

a second-degree neighbor of link k , then the limit rates of all flows at link k and link l must be at

least ck/nk .
As we will show, this means flow f is allocated its max-min fair rate (the fair share rate of link

k) at both links, and is classified correctly into B at link k and E at link l .
Given a lower bound ck/nk on the limit rates of all flows at links k and l , we can show that the

bottleneck rate at link k equals ck/nk , and the bottleneck rate at link l strictly exceeds ck/nk . This
follows from a straightforward property of the bottleneck rate calculation in s-PERC (and n-PERC)

proven in Appendix C.2:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:17

Link	k Link	l Link	j
ck
nk

<
cj
nj

<
cl
nl

Fig. 5. Links k and j share flows f and д respectively with link l .

Lemma 6 (Local Bottleneck Rate Property). Suppose limit rates at a link are at least the link’s
fair share rate, c/n, from time T , then the bottleneck rate computed by the link equals c/n by time
T + 2 · round . If on the other hand, limit rates are bounded below by a smaller value emin < c/n, the
bottleneck rate strictly exceeds emin by time T + 2 · round .3

It then follows that flow f , which is removed in the first-iteration along with link k , is allocated its

max-min fair rate and classified correctly at both its links. This is because at link k , its limit rate is

at least the link’s fair share rate, and link k’s computed bottleneck rate equals the fair share rate. So
the flow is allocated link k’s fair share rate and classified into B at link k . The bottleneck rate from

link k is propagated to link l because like f , all flows at link k are classified into B, and the value of

MaxE at link k eventually drops to 0 (soMaxE < B). Flow f ’s limit rate at link l equals link k’s fair
share rate, and the bottleneck rate computed by link l strictly exceeds link k’s fair share rate. So the

flow is allocated link k’s fair share rate and correctly classified into E at link l .
Our proof in Appendix C.4 shows that in subsequent iterations of 2-Waterfilling, the remaining

flows and links are correctly classified in turn, and their max-min fair share rates are correctly

allocated.

Why 2-Waterfilling? Notice that in order for a flow’s sending rate to converge to the max-min

fair rate, the flow must be allocated its max-min fair rate at all links, not just the bottleneck link.

This observation is key to understanding why it is natural to analyze Fair using 1-Waterfilling and

s-PERC using 2-Waterfilling.

Consider Figure 5 again. Links k and j both share a flow with link l . Link k has the lowest fair

share rate followed by link j and then link l ; i.e. ck/nk < c j/nj < cl/nl . Links k and j are both
removed in the first iteration of 1-Waterfilling, but only link k is removed in the first iteration of

2-Waterfilling.

In the Fair algorithm, flows f and д can converge in parallel because links j and k have the

lowest fair share rate of the links their flows cross (their first-degree neighbors); i.e. c j/nj < cl/nl
and ck/nk < cl/nl . The relevant local property of Fair is that links compute a bottleneck rate

that is locally max-min fair, and trivially at least the link’s fair share rate, c/n. Link l computes a

bottleneck rate (the limit rate for flows f and д) which exceeds the fair share rate of links k and

j, allowing them to correctly compute a (locally max-min fair) bottleneck rate equal to their fair

share rate, and allocate this to their flows. Flows f and д are also allocated the correct max-min

fair rate by link l because the local bottleneck rate that link l computes for them is higher, and link

l notices that links k and j give the flows a lower limit rate.

In contrast, s-PERC requires flow f bottlenecked at link k to converge before flow д bottlenecked

at link j , because link k has the lowest fair share rate of its second-degree neighbors. While flows f

3
Variable round is the duration of a round in seconds. Thus T + 2 · round refers to the time two rounds after T .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:18 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

and д are allocated their max-min fair rate at their bottleneck links in parallel (flow f at link k ,
flow д at link j), flow f is allocated its max-min fair rate at the non-bottleneck link l before flow д.

Link l has a higher fair share rate than its first-degree neighbor links k and j, and therefore link

l propagates a bottleneck rate to its neighbors that is higher than their fair share rates (lemma 5).

Therefore, links k and j compute a bottleneck rate that is equal to their fair share rate (lemma 6),

allocate this rate to flows f and д and classify the flows into B.
But link j’s flow cannot converge before link k’s flow. For flow д to converge, link l must also

allocate the correct rate to the flow (and classify the flow into E). Flow д’s limit rate at link l already
reflects the correct rate it picks up from link j. Now link l only needs to compute a bottleneck rate

that is higher, in order to allocate the correct rate to the flow.

But link l may compute a bottleneck rate that is lower, and wrongly conclude thatд is bottlenecked
at link l (classifying it into B). If we can guarantee that link l ’s first-degree neighbors (like link
k) have fair share rates greater than (or equal to) link j, we can prove (using lemma 5) that the

limit rates of all flows at link l are at least link j’s fair share rate, and (using lemma 6) that link l
computes a bottleneck rate for flow д that is strictly greater. Requiring that both link l and link l ’s
first-degree neighbors have fair share rates that are at least link j’s fair share rate is the same as

saying that link j has the lowest fair share rate of its second-degree neighbors. This is exactly why

flow f can converge immediately—it is bottlenecked at link k , which has the lowest fair-share rate

of first- and second-degree neighbors.

Note that we have not rigorously ruled out the possibility of using 1-Waterfilling to analyze

s-PERC. We have only proven that 2-Waterfilling is sufficient to find a bound on the convergence

time of s-PERC.

7 MAKING S-PERC PRACTICAL
The basic s-PERC algorithm works well in simulation, but to make sure it is practical we built a

hardware prototype and collected measurements from it. This forced us to answer several questions

along the way, such as what happens if control packets get lost? How precise do the rate calculations

need to be for them to converge? And so on. We answer these questions and use them to design a

practical version of s-PERC that we call s-PERC
⋆
to distinguish it from the base algorithm.

7.1 Design and Implementation of s-PERC⋆

Any practical implementation of s-PERC needs to address the following questions; we list our

s-PERC
⋆
design choices as guidance.

Signaling the start and end of flows: The end host signals a new flow by sending a control

packet initialized with i=0, s=E, x=0, and b=∞ (line 1 of algorithm 4). To signal the end of a flow

the end host tags the control packet with a FIN .

Limiting control overhead: We want control packets to zip through the network in order to

calculate rates quickly. However, we do not want the control packets to take too much bandwidth

away from the data packets. Hence, control packets are prioritized at every link, but rate-limited to

a fraction (2%-5%) of the link capacity.

Optimizing latency for short flows: s-PERC⋆
starts short flows (< 1 BDP) at line rate and

prioritizes them at every link (with priority second to control packets, for a total of three priority

levels for all traffic). In §8.2.2 we evaluate this optimization for short flows in heavy tail workloads

(e.g., web search, data mining). Since short flows start immediately at line-rate and finish within the

same RTT, we do not send control packets to reserve bandwidth for them. We have to be careful

about the remaining flows though: when they are about to end, they too may not have enough bytes

to send for a full RTT. To avoid allocating more bandwidth than necessary, an s-PERC
⋆
control

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:19

packet carries a bottleneck rate field bl0 for a virtual link l0 (unique to each flow) on the flow’s path,

with the value remaining bytes/RTT .
Estimating round: Links must resetMaxE andMaxE ′ once per round, which is determined locally

by each link, depending on how often control packets are seen. Round should not be too small; if

MaxE is reset prematurely, the link maywrongly propagate a bottleneck rate and delay convergence.

Control packets carry the longest period (RTT) the end host has seen on the flow’s path, Txctr l ;
links use this field to set the local value of round.
Handling dropped control packets: The source end-host detects dropped control packets using

a timeout, and restarts the flow from the next unacknowledged data packet. The links will continue

to allocate the same rate to the flow, which is OK for a dropped control packet, but not OK if

the flow has finished. s-PERC
⋆
links gradually phase out the old state from inactive flows using

shadow variables NumB′ and SumE ′ to re-compute the latest values of NumB and SumE on the

side and sync up with the actual values every round (see algorithms 6 and 7 in Appendix D). To

avoid double-counting a flow in one round, control packets carry the round number in a per-link

field (the number of resets) so that a link can recognize if it has already considered it this round.

Headroom: A queue can briefly build up, when a flow’s end-host is asked to increase its rate but

before other flows that share the bottleneck link have decreased their rates. s-PERC
⋆
leaves a small

fraction (e.g., 1%-2%) of the capacity unallocated at each link as headroom, to allow transient queues

to drain quickly.

Control packet size: The s-PERC⋆
control packet has five per-link fields: the allocation x, bottle-

neck state s, rate b, the ignore bit, and the round. Together with the flow size information, the FIN
tag and the control-packet period Txctr l , a control packet in a two-level, four hop network has 46

bytes (table 9 in Appendix D). The control packet state could be reduced using techniques in [37],

but we have not done so.

Division in hardware: The switch needs to perform the division b = (c − SumE)/NumB once per

control packet to propagate the bottleneck rate and update the link state (SumE, NumB). This is
hard to do at line-rate, so in our hardware prototype we break it into two parts. First we atomically

update the link state in one clock cycle based on the comparison (c − SumE) < e ∗ NumB, which
only requires a much simpler integer multiplication. The second step is to calculate (and propagate)

the new bottleneck rate, which requires a division, but fortunately can be pipelined over multiple

clock cycles. We use the common technique of approximating division using a lookup table [45].

Switch ASICs already have hundreds of megabytes of lookup tables, and it is reasonable to assume

we could use a small fraction (say, 1%) for a division lookup table. Our prototype uses this approach

and we found it works well with small tables; our results measured from our hardware prototype

use an 84KB division lookup table (32Kb of exact match; and 2048 TCAM entries, where each entry

has a 32b key and 10b result.)

8 EVALUATION
In this section we evaluate s-PERCwith numerical simulations (§8.1), packet-level simulations (§8.2),

and a hardware prototype (§8.3).

8.1 Numerical Simulations
8.1.1 Convergence time. We simulated different PERC algorithms for more than 6,000 different

routing matrices, to compare the convergence times of the different schemes in practice to the

worst-case bounds from theory. We compared Fair , n-PERC and s-PERC, and a fourth algorithm

SL [46], which uses per-flow state to calculate bottleneck rates differently from Fair . In SL each

link stores the limit rate and bottleneck state for every flow. While SL does not have a proof of

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:20 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

n-PERC
 (1600)

s-PERC
 (1600)

Fair
 (1600)

SL
 (1582)

10

20

30

Co
nv

er
ge

nc
e

Ti
m

e
(R

TT
s)

(a) 1600 sparse routing matrices

n-PERC
 (5000)

s-PERC
 (5000)

Fair
 (5000)

0

5

10

15

20

Co
nv

er
ge

nc
e

Ti
m

e
(R

TT
s /

 N
1)

(b) 5000 dense routing matrices

Fig. 6. Convergence times of different PERC algorithms with random routing matrices. s-PERC: 1 round=1
RTT.

convergence, it modifies Charny et al. [13], which was shown to converge in 4N∞ rounds (N∞ is

the number of iterations that standard waterfilling [11] takes to converge).

Setup: For each simulation run, we randomly generate a routing matrix withM links and N flows,

where each flow crosses P randomly picked links. For sparse networks (where flows typically

cross only a few links) we ran 200 simulations for each of the following 16 settings: M=100 ×

N∈{102, 103, 104} × P∈{5, 10} andM=1000 × N=1000 × P∈{5, 10}. All flows start at once and see a

random delay d at each link to evaluate arbitrary packet orderings.

We also simulated several thousand dense routing matrices (M=100,N=100, P=80), which have

only a few bottleneck links.

Results: Figure 6a shows a summary of convergence times for sparse routing matrices. The median

convergence time of Fair , s-PERC, n-PERC are similar while SL takes longer (6, 7, 8 and 13 RTTs

respectively.) At the tail (95th percentile), Fair and s-PERC have similar convergence times at 9

and 12 RTTs, while n-PERC and SL are 2–3 times slower than Fair at 18 and 26 RTTs. SL failed

to converge for 18 runs out of 1600. For the dense routing matrices (Figure 6b), the maximum

convergence time (normalized by N1) is 1.4 RTTs for Fair , 2.0 RTTs for s-PERC and 20.6 RTTs for

n-PERC. The median convergence times are comparable: 1.1 RTTs for s-PERC and Fair and 1.4

RTTs for n-PERC. SL (not shown) failed to converge for 72 runs, and took as long as 50-100 RTTs

for at least two runs out of 5000. Worst-case convergence times: We verified that s-PERC takes

no more than 6N2 RTTs to converge. For n-PERC, while we didn’t find a simulation that didn’t

converge, we found that for some runs where the routing matrix is dense and there are only a few

bottleneck links, convergence can take long. The worst case we observed was 42 RTTs (21N2 RTTs)

for a dense routing matrix with four bottleneck links (and N1=N2=N∞=2.) For the same example,

s-PERC took 3 RTTs.

8.1.2 Robustness. s-PERC needs to be robust to control packet drops and imprecise rate calcu-

lations in hardware. To evaluate s-PERC’s robustness, we enhance the simulator in the previous

section to model random control packet drops and approximate division based on lookup-tables, as

described below. We used a subset (10%) of the sparse routing matrices for these simulations.

Control packet drops: s-PERC⋆
can recover from control packet drops by recomputing the

aggregate state using shadow variables, which are synced with NumB and SumE every round (§7).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:21

We test robustness to control packet drops as follows: Given a routing matrix, we start all flows at

once, and run the simulation for 100 RTTs. During the first 20 RTTs, control packets are dropped at

every link with probability p = 1% or p = 0.1%. Over the next 80 RTTs, no more control packets

are dropped and we watch as the algorithm converges again. We found that in every run, all flows

converged again quickly (median 10 RTTs) to their max-min fair allocation after the last packet

drop.

Imprecise rate calculations: Our NetFPGA hardware prototype (§8.3) uses a lookup table for

division instead of a floating point divider. In numerical simulation we tried different table sizes

(20, 80, 320 KB) and observed that as the table sizes get smaller the flows stabilize to values that are

farther from the optimal or have wider oscillations around the optimal. We found that a table size

of 320kB was sufficient for all the workloads to converge to within 10% of the optimal rates, and

in the same convergence time. A 320kB table is easily accommodated in today’s switch hardware,

which have hundreds of megabytes of lookup tables.

8.2 Packet-level Simulations
We used ns-2

4
packet-level simulations to evaluate s-PERC in datacenter and wide-area networks

and for realistic workloads.

8.2.1 Convergence Times. We compared proactive s-PERC
⋆
with the reactive RCP (Rate Control

Protocol) [17] to see how fast they converge for long-lived flows. We use RCP as our representative

reactive algorithm because it is max-min fair and was designed to converge faster than TCP [47].

In RCP, every link computes a fair share rate every RTT, and advertises the rate to every flow

that shares the link. A flow is then transmitted at the smallest advertised fair-share rate along its

path. We say that RCP is reactive because the fair share rate calculation is based on measuring and

reacting to the rate at which traffic arrives and the queue builds up at the link. Setup: To represent

a data center network, we simulate a 144-server 3-level fat-tree topology [4] with 100 and 400 Gb/s

links. We start flows between random pairs of servers, with N=20 flows per server on average.
5
To

represent a WAN network we use Google’s B4 inter–data-center network topology [30] with 1Gb/s

and 10Gb/s links and N=100 flows per server.

For both the DC and WAN network we evaluate how s-PERC and RCP converge with a dynamic

workload: we wait for the rates to converge, then replace 40% of the flows with new ones. We

replace all flows at once to create a big transient jolt, to see how robust they are and how long

they take to converge again. Figures 7 and 8 show CDFs of convergence times for 1,000 tests (ten

changes per run, and 100 runs
6
) for the DC and WAN network respectively. Table 5 shows the

average time it took for flows to stabilize at the beginning of each run in the WAN setting (100

runs, except for RCP at 10Gb/s, where we used 200 runs).

Metrics: We say that the flow rates have converged when most of the flows remain within a small

distance of the ideal max-min values for at least N consecutive RTTs. We look at different degrees

of accuracy, for example when 95% of flows are within 20% of ideal, or when 99% of flows are within

10% of ideal.

Results: In the data-center setting (Figure 7), s-PERC
⋆
converges at least ten times faster than

RCP at the median and tail. s-PERC
⋆
gets within 10% of the ideal rates for at least 99% of flows in

only 14 RTTs while RCP takes 174 RTTs. It only takes s-PERC
⋆
4 RTTs (median) to get within 20%

of the ideal rates for at least 95% of flows, while RCP needs 45 RTTs. In the WAN setting (Figure 8),

4
The Network Simulator (ns-2), https://www.isi.edu/nsnam/ns/

5
We chose 20 flows because it approximates the number of simultaneous active flows we observed on congested links in

simulations of realistic workloads (search and data mining) using Poisson arrivals at 80% load (FCT experiments in §8.2.2).

6
for RCP in WAN at 10Gb/s, we simulated five changes per run for 200 runs

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

https://www.isi.edu/nsnam/ns/

21:22 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

5 10 15 20
Convergence Time (RTTs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

s-PERC

100 200
Convergence Time (RTTs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

RCP

95% flows
 within 20%
99% flows
 within 10%

Fig. 7. CDF of convergence times for for RCP and s-PERC⋆ in the data-center network. Note difference in
x-axis scales. Settings in Table 6.

convergence times and distributions for both link speeds are similar. When 40% of the flows are

changed at once, s-PERC
⋆
is 1.3–1.7 times faster than RCP at the median, and 1.5–6 times faster at

the tail, depending on the metric. When 70% of the flows are changed at once (Figure 8a), s-PERC
⋆

is 1.8–2.5 times faster at the median, and 2.4–7.2 times faster at the tail. Table 5 shows that when

all flows start at once, s-PERC
⋆
converges about five times faster (on average) than RCP for the

WAN topology, for both link rates.

Discussion: As expected, s-PERC⋆
converges much faster than RCP in all our experiments. How

much faster depends on the kind of network (DC or WAN), and the magnitude of the transient

jolt from new flows. Let’s consider each factor in turn. Comparing the DC and WAN, we see that

the median convergence time of s-PERC is 10 times faster than RCP in the DC, but only 30–70%

faster in the WAN. We see two reasons for this: (1) s-PERC benefits greatly from short RTTs in the

DC, with little variance. This is because s-PERC’s convergence is bounded by a number of rounds

which must be set to the longest RTT. In the WAN, RTTs vary by two orders of magnitude, and

round must be set to the largest RTT which is over 100ms. (2) s-PERC is further slowed in the WAN

because control packets are only updated in the forward direction, increasing convergence time by

a factor of two. On the other hand, RCP’s convergence time in the WAN depends on the average

(not the max) flow RTT with each flow operating independently, allowing RCP to close the gap

slightly in the WAN. Note that increasing the data-rate in the WAN does not improve convergence

time. This is because in the DC RTTs are dominated by serialization delay, which are reduced by

faster links. But in the WAN, RTTs are dominated by propagation delay which is unaffected by

data-rate.

Next, we consider how the algorithms react to sudden changes in traffic. The biggest change is

when the simulation starts and all flows start at the same time. Here, s-PERC converges five times

faster on average (Table 5). When we change 40% of the flows during a run, s-PERC is 1.3–1.7 times

faster than RCP. When we change 70% of the flows, s-PERC is 1.8–2.5 times faster than RCP. This

is because the convergence time of s-PERC is a function of the traffic matrices only, whereas RCP

has to converge cautiously so as to remain stable in the face of large transient jolts.

Finally, we note that not only does s-PERC converge more quickly, the distribution of convergence

times is narrower, with much better tail latency performance than RCP. Figure 8b shows that while

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:23

10 20 30
Convergence Time (RTTs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

95% flows within 20%

0 50 100 150
Convergence Time (RTTs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

99% flows within 10%

s-PERC (40%)
RCP (40%)
s-PERC (70%)
RCP (70%)

(a) WAN convergence time experiments for 1Gb/s links. Solid lines
are for experiments in which 40% of the flows are replaced at once,
while dashed lines correspond to replacing 70% of the flows at
once. For 40% change 95% of s-PERC flows converge within 20%
of max-min in 7 RTTs at median and 9 RTTs for 99%-ile tail. RCP
takes 9 and 14 RTTs. For 99% flows to converge within 10% of
max-min, s-PERC takes 12 and 18 RTTs at median and tail, while
RCP takes 21 and 115 RTTs respectively.

7.5 10.0 12.5 15.0
Convergence Time (RTTs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

95% flows within 20%

0 50 100 150
Convergence Time (RTTs)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

99% flows within 10%

s-PERC
RCP

(b) WAN convergence time experiments for 10Gb/s links. For 95%
flows to converge within 20% of max-min, s-PERC takes 7 RTTs
at median and 9 RTTs for 99%-ile tail. RCP takes 9 and 13 RTTs.
For 99% flows to converge within 10% of max-min, s-PERC takes
13 and 19 RTTs at median and tail, while RCP takes 20 and 114
RTTs respectively.

Fig. 8. CDF of convergence times following each change (40% flows replaced at once) for RCP and s-PERC⋆

in the WAN network at 1Gb/s and 10Gb/s. Convergence time is in terms of the average RTT of all flows seen
during the run, on average 70ms. Dotted lines in the background indicate 50th and 99th percentiles for each
scheme. Settings in Table 6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:24 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Table 5. Comparison of convergence time (in RTTs) when all flows start at once. WAN topology with different
link rates. Each entry is averaged over 100 runs, except for RCP at 10Gb/s, which used 200 (short) runs.

Link rate 95% flows, 20% acc. 99% flows, 10% acc.

RCP s-PERC RCP s-PERC
1Gb/s 53 10 91 15

10Gb/s 50 10 91 16

Table 6. Settings for Convergence Time and FCT experiments (§8.2).

Algorithm Buffer Ctrl packet Other settings

s-PERC
⋆

128KB 64B

initial round=20µs (DC), 100ms (WAN),

headroom=2%, ctrl rate=2% (FCT), 4% (CT)

RCP (DC) 128KB 40B α=0.4, β=0.2, update interval=100ms

RCP (WAN) 256KB 40B α=0.9, β=0.1, update interval=20ms

p-Fabric 360KB n/a initial cwnd=120, rto=45µs

RCP takes only 20 RTTs at the median to get 99% of the flows within 10% of max-min fair, at least

20% of the time RCP took more than 50 RTTs. s-PERC flows converge quickly, with little variance.

8.2.2 Flow Completion Times. We have seen that s-PERC converges to fair rates an order of

magnitude faster than reactive algorithms. While cloud providers care about fairness [30, 35],

users care about application level metrics like the FCT, which captures latency for short flows and

throughput for large flows. Both fairness and application level metrics are important for s-PERC if

it is to be deployed in a real datacenter or WAN. Next, we see how s-PERC affects flow completion

time.

Workloads: We simulated two workloads, one for search, the other for data mining with loads of

60% and 80%. We assume Poisson flow arrivals and flow size distributions from prior measurements

of actual workloads [4]. Both workloads are heavy-tailed, with few large flows carrying most of

the bytes.

Metrics:We measure the flow completion times (FCTs) then normalize them to the time it would

take to transmit the flow in an otherwise empty network. We bin flows according to their size and

the fraction of total bytes they carry. The first bin contains the smallest flows that contribute 1% of

the total bytes. Most flows are small and belong to the first bin. The remaining bins contain equal

fractions (by bytes contributed) of the remaining flows.

Algorithms:We compare RCP, s-PERC
⋆
, p-Fabric [4], and an ideal max-min allocator. RCP and

s-PERC
⋆
are fast rate-allocation schemes that target max-min fairness; the ideal max-min allocator

serves as a reference for both. p-Fabric is a popular DC congestion control scheme that aims to

emulate SRPT (shortest remaining processing time); switches schedule packets in increasing order

of remaining flow size. We evaluate two versions of s-PERC
⋆
. The basic version does not optimize

latency for short flows; flows must wait for the rate algorithm to run before sending any packets

and all flows get the same priority at the links. s-PERC
⋆
‘short’ starts short flows at line rate and

prioritizes them at the links.

Results: Figure 9 compares FCTs for search at 60% load. For example, the max-min fair schemes

(RCP, basic s-PERC
⋆
and max-min allocator) are almost identical for long flows (bottom right

graph), as expected. For very short flows (top left) basic s-PERC
⋆
flows complete 25-50% sooner

than RCP, because s-PERC
⋆
queues are kept shorter.

7
With s-PERC

⋆
‘short’, the smallest flows start

at line rate and see no queues (because they are high priority); hence they complete in a quarter of

7
s-PERC

⋆
and RCP start at x=2, because of the extra RTT it takes to get a starting rate.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:25

0 1 2 3 4 5 10
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00

CD
F

0-1% of bytes, 53% of flows

0 10 150 10 20 30
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00

CD
F

1-33% of bytes, 36% of flows

0 10 150 10 20
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00

CD
F

33-66% of bytes, 8% of flows

0 10 150 10 20
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00
CD

F
66-100% of bytes, 3% of flows

p-Fabric
s-PERC (basic)
s-PERC (short)
RCP
Ideal Max-Min

Fig. 9. FCTs for search workload at 60% load. Settings in Table 6. Note bin 4 (lower right) has fewer than 30
samples for the 95th percentile and above (horizontal red line).

0 1 2 3 4 5
FCT (norm. by min. FCT)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0-1% of bytes, 94% of flows

0 1 2 3 4 5 10
FCT (norm. by min. FCT)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1-100% of bytes, 6% of flows

s-PERC (short)
s-PERC (basic)
Ideal Max-Min
p-Fabric
RCP

Fig. 10. FCTs for data-mining workload at 60% load. Settings in Table 6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:26 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

��IORZV�
I��I�

��IORZV�
I��I�

��IORZ�
I�

%�

%�

+� +� +� +�

Fig. 11. The topology and traffic pattern used for the two-level dependency chain experiment.

the time as the basic s-PERC
⋆
, confirming that the short-flow optimization is effective for search

and data mining workloads.

pFabric shines for short flows because it emulates greedy SRPT, which is known to achieve close

to optimal average FCTs [4, 9]. This comes at the expense of the largest flows; the largest flows get

almost 200% worse throughput. For the smallest flows, optimized s-PERC
⋆
is slightly better than

p-Fabric at the tail, and both are close to the minimum possible at the median.

Figure 10 compares FCTs with the data-mining workload at 60% load. pFabric shines again for

very short flows, while s-PERC
⋆
‘short’ tracks ideal max-min very closely. Results at 80% load are

qualitatively similar (Figures 12, 13 in Appendix D).

8.3 Hardware Prototype and Evaluation
To confirm that s-PERC

⋆
is practical in hardware at high link speeds, we implemented the s-PERC

⋆

switch on the 4x10Gb/s NetFPGA SUME platform [49] with a 200MHz hardware clock. The end

host uses the MoonGen DPDK packet processing library [18]. Our hardware testbed network with

three NetFPGA switches connecting four servers at 10Gb/s is shown in Figure 11. We used it to

compare TCP Reno, DCTCP (ECN bits set by the switches), and s-PERC.

We ran two experiments to compare the convergence time of the three algorithms:

Incast: Two senders transmit to one receiver causing congestion at the switch; the bottleneck

is the 10Gb/s link at the receiver. Figure 1 compares the convergence behavior of TCP, DCTCP,

and s-PERC. TCP generally takes longer than DCTCP for the flow rates to stabilize, and s-PERC

converges about an order of magnitude faster than TCP and DCTCP.

Dependency chain: In this experiment we created a dependency chain between two links. The

green and blue flows start first, with the tightest bottleneck at link B1. When we add the red flows

the bottleneck moves to link B2 and the green flow can increase its rate. For this traffic pattern the

2-Waterfilling algorithm takes two iterations to compute the max-min fair rates, eliminating B2

first, then B1. In this experiment, s-PERC converges in 1.56 ± 0.23 ms, and DCTCP converges in

65 ± 30 ms. TCP failed to converge at all in this experiment. The performance of s-PERC is dictated

by the timeout value used by the switch to reset theMaxE state, which must exceed the control

packet RTT. According to Theorem 4, in a situation where 2-Waterfilling takes two iterations, and

the maximum RTT is 1 ms, s-PERC’s convergence time is upper-bounded by 12 ms. Hence even at

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:27

the upper bound, s-PERC converges more than five times faster than DCTCP. We expect s-PERC to

converge even faster if control packets are prioritized by the NIC.

9 RELATEDWORK
Some reactive algorithms have been shown to converge to max-min fair [1, 32, 47]. Some proactive
algorithms have been shown to converge asymptotically [15, 19, 22, 25, 36], but only a few have

been proven to compute exact max-min fair rates in a known finite time [2, 10, 12, 24, 38, 43]. But

these are not practical because they require per-flow state at the switches or require updates to be

synchronized [2, 20]. Some distributed algorithms have been proven to converge to approximate

max-min fair rates [7, 34], while others target different but related problems like α-fairness for
finite values of α [33] or the concurrent multi-commodity flow problem [6]. Note that although the

algorithms proposed by Marasevic et al. [33] and Awerbuch et al. [6] are “stateless”, they assume a

model [6] where agents (servers or flows) have local clocks that are synchronized. This is more

restrictive than our model, which like previous work (mostly for ATM networks) [10, 12, 24, 38, 43],

does not require clocks to be synchronized. Some algorithms converge fast in simulations but

have not been proven to converge to max-min fair rates in a general multiple bottleneck link

setting [27, 29, 37, 46]. Our scheme builds upon Bartal’s ABR algorithm [10], which addresses the

problem of artificially low bottleneck rates by propagating the maximum of the bottleneck rate

and MAXSAT, the maximum allocation of a satisfied (E) flow. Note that their proof of convergence
defines and usesMAXSAT as the ‘maximum satisfied allocation’ which requires per-flow state to

maintain. We use assumptions of bounded RTTs for control packets to do away with the per-flow

state requirement without sacrificing stability or provably fast convergence. The 1-Waterfilling

algorithm was introduced by Ros-Giralt et al. [43] to analyze the convergence behavior of d-CPG

(similar to Fair), which requires per-flow state. We generalize this algorithm to the family of

algorithms called k-Waterfilling and show that we can use the 2-Waterfilling algorithm to analyze

the convergence behavior of s-PERC.

For data centers: pFabric [4] and PIAS[8] leverage priority queues in switches to approximate SRPT

or SJF. We borrow this idea for short flows in our practical implementation of s-PERC. PDQ [23]

and D3 [48] are proactive congestion control algorithms, although their goal is to minimize mean

FCT and the number of missed deadlines by dynamically prioritizing some flows over others.

PDQ [23] is particularly interesting as it can emulate centralized scheduling algorithms such as

shortest-job-first and earliest-deadline-first. PDQ requires some per-flow state for the top active

flows, and in a general setting this state could be very large. PASE [39] is a hybrid scheme, where

flows get an initial rate from a software controller at the TOR switch and then switch to a reactive

scheme. NDP [21] is a receiver-driven transport protocol, where the sender’s flow rate is dictated

by the receiver, based on the sender’s demand as well as the over-subscription at the receiver.

s-PERC can complement NDP by providing explicit flow rates that also take into consideration

hot spots within the network, not just at the edge. ExpressPass [14] is a credit-based congestion

control scheme that uses credit packets that traverse the same path as the data traffic, to aim for fast

convergence. The difference is that s-PERC control packets are used by the network to calculate

explicit rates directly, while ExpressPass credit packets must themselves go through an aggressive

reactive control loop before converging to credit rates that the data traffic can use.

10 CONCLUSION
The problem we are addressing is quite alarming. Pretty much every network today uses reactive

congestion control algorithms that converge timidly and more slowly than their owners realize.

This is bad news when the network is congested: For a (long) time before rates converge, flows

can operate far from their fair share rate, links are either under-used or overloaded, and buffers

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:28 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

can be much fuller than necessary, increasing delay and dropping packets (and hence restarting

the algorithm) unnecessarily. Many flows complete long before the algorithm has converged. The

behavior of reactive algorithms will get worse as future networks get faster.

s-PERC points to the intriguing potential of an order of magnitude tighter and faster control

over how our links are shared among flows, and it is the first to do so with provable bounds on

convergence. Of course, much more work is required before concluding that s-PERC should be

deployed widely, for example it requires adoption of switches that natively (or can be programmed

to) support control packet processing. But once PERC algorithms can be deployed, one can imagine

more sophisticated PERC algorithms that optimize over more traffic types and sharing policies. We

think of s-PERC as a step towards this possibility.

ACKNOWLEDGMENTS
We thank our shepherd, Kostya Avrachenkov and the anonymous SIGMETRICS reviewers for their

valuable comments. We thank Radhika Mittal, Srinivas Narayana, Sundar Iyer, Manikanta Kotaru,

and Renata Teixeira for their feedback on early drafts of this paper. This work was supported by

Intel Corporation and the Stanford Platform Lab.

REFERENCES
[1] Yehuda Afek, Yishay Mansour, and Zvi Ostfeld. 1996. Phantom: A Simple and Effective Flow Control Scheme.

In Conference Proceedings on Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM ’96). ACM, New York, NY, USA, 169–182. https://doi.org/10.1145/248156.248172

[2] Yehuda Afek, Yishay Mansour, and Zvi Ostfeld. 1999. Convergence Complexity of Optimistic Rate-Based Flow-Control

Algorithms. Journal of Algorithms 30, 1 (Jan. 1999), 106–143. https://doi.org/10.1006/jagm.1998.0970

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta

Sengupta, and Murari Sridharan. 2010. Data Center TCP (DCTCP). In Proceedings of the SIGCOMM 2010 Conference
(SIGCOMM ’10). ACM, New York, NY, USA, 63–74. https://doi.org/10.1145/1851182.1851192

[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick McKeown, Balaji Prabhakar, and Scott Shenker.

2013. pFabric: Minimal Near-optimal Datacenter Transport. In Proceedings of the ACM SIGCOMM 2013 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM ’13). ACM, New York,

NY, USA, 435–446. https://doi.org/10.1145/2486001.2486031

[5] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of Approximating the Frequency Moments.

J. Comput. System Sci. 58, 1 (Feb. 1999), 137–147. https://doi.org/10.1006/jcss.1997.1545
[6] Baruch Awerbuch and Rohit Khandekar. 2007. Greedy Distributed Optimization of Multi-commodity Flows. In

Proceedings of the Twenty-sixth Annual ACM Symposium on Principles of Distributed Computing (PODC ’07). ACM, New

York, NY, USA, 274–283. https://doi.org/10.1145/1281100.1281140

[7] B. Awerbuch and Y. Shavitt. 1998. Converging to approximated max-min flow fairness in logarithmic time. In

Proceedings. IEEE INFOCOM ’98, the Conference on Computer Communications. Seventeenth Annual Joint Conference
of the IEEE Computer and Communications Societies. Gateway to the 21st Century (Cat. No.98, Vol. 3. 1350–1357 vol.3.
https://doi.org/10.1109/INFCOM.1998.662951

[8] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang. 2017. PIAS: Practical Information-Agnostic

Flow Scheduling for Commodity Data Centers. IEEE/ACM Transactions on Networking 25, 4 (Aug. 2017), 1954–1967.

https://doi.org/10.1109/TNET.2017.2669216

[9] Amotz Bar-Noy, Magnús M Halldórsson, Guy Kortsarz, Ravit Salman, and Hadas Shachnai. 2000. Sum multicoloring of

graphs. Journal of Algorithms 37, 2 (2000), 422–450.
[10] Yair Bartal, Martin Farach-Colton, Shibu Yooseph, and Lisa Zhang. 2002. Fast, fair and frugal bandwidth allocation in

atm networks. Algorithmica 33, 3 (2002), 272–286.
[11] Dimitri Bertsekas and Robert Gallager. 1987. Data Networks. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
[12] Anna Charny, David D Clark, and Raj Jain. 1995. Congestion control with explicit rate indication. In Communications,

1995. ICC’95 Seattle,’Gateway to Globalization’, 1995 IEEE International Conference on, Vol. 3. IEEE, 1954–1963.
[13] Anna Charny, KK Ramakrishnan, and Anthony Lauck. 1996. Time scale analysis scalability issues for explicit rate

allocation in ATM networks. IEEE/ACM Transactions on Networking 4, 4 (1996), 569–581.

[14] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-Scheduled Delay-Bounded Congestion Control for Datacenters.

In Proceedings of the 2017 ACM Conference on Special Interest Group on Data Communication (SIGCOMM ’17). ACM,

New York, NY, USA, 239–252. https://doi.org/10.1145/3098822.3098840

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

https://doi.org/10.1145/248156.248172
https://doi.org/10.1006/jagm.1998.0970
https://doi.org/10.1145/1851182.1851192
https://doi.org/10.1145/2486001.2486031
https://doi.org/10.1006/jcss.1997.1545
https://doi.org/10.1145/1281100.1281140
https://doi.org/10.1109/INFCOM.1998.662951
https://doi.org/10.1109/TNET.2017.2669216
https://doi.org/10.1145/3098822.3098840

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:29

[15] Jorge A. Cobb and Mohamed G. Gouda. 2011. Stabilization of Max-min Fair Networks Without Per-flow State.

Theoretical Computer Science 412, 40 (Sept. 2011), 5562–5579. https://doi.org/10.1016/j.tcs.2010.11.042
[16] A. Demers, S. Keshav, and S. Shenker. 1989. Analysis and Simulation of a Fair Queueing Algorithm. In Symposium

Proceedings on Communications Architectures &Amp; Protocols (SIGCOMM ’89). ACM, New York, NY, USA, 1–12.

https://doi.org/10.1145/75246.75248

[17] Nandita Dukkipati. 2008. Rate Control Protocol (Rcp): Congestion Control to Make Flows Complete Quickly. Ph.D.

Dissertation. Stanford University, Stanford, CA, USA. Advisor(s) Mckeown, Nick. AAI3292347.

[18] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, FlorianWohlfart, and Georg Carle. 2015. Moongen: A scriptable

high-speed packet generator. In Proceedings of the 2015 ACM Conference on Internet Measurement Conference. ACM,

275–287.

[19] Eli Gafni and Dimitri Bertsekas. 1984. Dynamic control of session input rates in communication networks. IEEE Trans.
Automat. Control 29, 11 (1984), 1009–1016.

[20] Dimitris Giannopoulos, Nikos Chrysos, Evangelos Mageiropoulos, Giannis Vardas, Leandros Tzanakis, and Manolis

Katevenis. 2018. Accurate Congestion Control for RDMA Transfers. In 2018 Twelfth IEEE/ACM International Symposium
on Networks-on-Chip (NOCS). IEEE, 1–8.

[21] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W Moore, Gianni Antichi, and Marcin

Wójcik. 2017. Re-architecting datacenter networks and stacks for low latency and high performance. In Proceedings of
the 2017 ACM Conference on Special Interest Group on Data Communication. ACM, 29–42.

[22] Howard P Hayden. 1981. Voice flow control in integrated packet networks. Ph.D. Dissertation. Massachusetts Institute of

Technology.

[23] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Finishing Flows Quickly with Preemptive Scheduling.

In Proceedings of the ACM SIGCOMM 2012 Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’12). ACM, New York, NY, USA, 127–138. https://doi.org/10.1145/2342356.2342389

[24] Y. Thomas Hou, Shivendra S. Panwar, and Henry H. Y. Tzeng. 2004. On Generalized Max-Min Rate Allocation and

Distributed Convergence Algorithm for Packet Networks. IEEE Trans. Parallel Distrib. Syst. 15, 5 (May 2004), 401–416.

https://doi.org/10.1109/TPDS.2004.1278098

[25] Jeffrey Jaffe. 1981. Bottleneck flow control. IEEE Transactions on Communications 29, 7 (1981), 954–962.
[26] Lavanya Jose, Lisa Yan, Mohammad Alizadeh, George Varghese, Nick McKeown, and Sachin Katti. 2015. High Speed

Networks Need Proactive Congestion Control. In Proceedings of the 14th ACM Workshop on Hot Topics in Networks
(HotNets-XIV). ACM, New York, NY, USA, Article 14, 7 pages. https://doi.org/10.1145/2834050.2834096

[27] Shivkumar Kalyanaraman, Raj Jain, Sonia Fahmy, Rohit Goyal, and Bobby Vandalore. 2000. The ERICA switch

algorithm for ABR traffic management in ATM networks. IEEE/ACM Transactions on Networking 8, 1 (2000), 87–98.

[28] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion Control for High Bandwidth-delay Product Net-

works. In Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM ’02). ACM, New York, NY, USA, 89–102. https://doi.org/10.1145/633025.633035

[29] Yuseok Kim, Wei Kang Tsai, Mahadevan Iyer, and Jordi Ros-Giralt. 1999. Minimum rate guarantee without per-flow

information. In Network Protocols, 1999.(ICNP’99) Proceedings. Seventh International Conference on. IEEE, 155–162.
[30] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinadhuni, Enrique Cauich Zermeno, C. Stephen

Gunn, Jing Ai, Björn Carlin, Mihai Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and Amin

Vahdat. 2015. BwE: Flexible, Hierarchical Bandwidth Allocation for WAN Distributed Computing. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Communication (SIGCOMM ’15). ACM, New York, NY, USA,

1–14. https://doi.org/10.1145/2785956.2787478

[31] Jean-Yves Le Boudec. 2000. Rate adaptation, congestion control and fairness: A tutorial. (2000).

[32] Tae-Jin Lee and G. De Veciana. 1998. A decentralized framework to achieve max-min fair bandwidth allocation for ATM

networks. In IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), Vol. 3. 1515–1520 vol.3. https://doi.org/10.1109/GLOCOM.

1998.776608

[33] Jelena Marasevic, Cliff Stein, and Gil Zussman. 2015. A Fast Distributed Stateless Algorithm for alpha-Fair Packing

Problems. arXiv preprint arXiv:1502.03372 (2015).
[34] Alain Mayer, Yoram Ofek, and Moti Yung. 1996. Approximating max-min fair rates via distributed local scheduling

with partial information. In Proceedings of the Fifteenth annual joint conference of the IEEE computer and communications
societies conference on The conference on computer communications (INFOCOMM’98), Vol. 2. IEEE, 928–936.

[35] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat,

Yaogong Wang, David Wetherall, and David Zats. 2015. TIMELY: RTT-based Congestion Control for the Datacenter. In

Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication (SIGCOMM ’15). ACM, New

York, NY, USA, 537–550. https://doi.org/10.1145/2785956.2787510

[36] Jeannine Mosely. 1984. Asynchronous distributed flow control algorithms. Ph.D. Dissertation. Massachusetts Institute of

Technology.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

https://doi.org/10.1016/j.tcs.2010.11.042
https://doi.org/10.1145/75246.75248
https://doi.org/10.1145/2342356.2342389
https://doi.org/10.1109/TPDS.2004.1278098
https://doi.org/10.1145/2834050.2834096
https://doi.org/10.1145/633025.633035
https://doi.org/10.1145/2785956.2787478
https://doi.org/10.1109/GLOCOM.1998.776608
https://doi.org/10.1109/GLOCOM.1998.776608
https://doi.org/10.1145/2785956.2787510

21:30 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

[37] Alberto Mozo, Jose Luis López-Presa, and Antonio Fern’ndez Anta. 2012. SLBN: A Scalable Max-min Fair Algorithm for

Rate-Based Explicit Congestion Control. In Network Computing and Applications (NCA), 2012 11th IEEE International
Symposium on. IEEE, 212–219.

[38] Alberto Mozo, JosÃľ Luis LÃşpez-Presa, and Antonio FernÃąndez Anta. 2018. A distributed and quiescent max-

min fair algorithm for network congestion control. Expert Systems with Applications 91 (2018), 492 – 512. https:

//doi.org/10.1016/j.eswa.2017.09.015

[39] Ali Munir, Ghufran Baig, Syed M. Irteza, Ihsan A. Qazi, Alex X. Liu, and Fahad R. Dogar. 2014. Friends, Not Foes:

Synthesizing Existing Transport Strategies for Data Center Networks. In Proceedings of the 2014 ACM Conference on
Special Interest Group on Data Communication (SIGCOMM ’14). ACM, New York, NY, USA, 491–502. https://doi.org/10.

1145/2619239.2626305

[40] Abhay K Parekh and Robert G Gallager. 1993. A generalized processor sharing approach to flow control in integrated

services networks: the single-node case. IEEE/ACM Transactions on Networking 1, 3 (1993), 344–357.

[41] Jonathan Perry, Hari Balakrishnan, and Devavrat Shah. 2017. Flowtune: Flowlet Control for Datacenter Networks.

In Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation (NSDI’17). USENIX
Association, Berkeley, CA, USA, 421–435. http://dl.acm.org/citation.cfm?id=3154630.3154665

[42] Jordi Ros-Giralt. 2003. A Theory of Lexicographic Optimization for Computer Networks. Ph.D. Dissertation. University
of California, Irvine.

[43] Jordi Ros-Giralt and Wei Kang Tsai. 2001. A theory of convergence order of maxmin rate allocation and an optimal

protocol. In Proceedings IEEE INFOCOM 2001 Conference on Computer Communications. IEEE, 717–726.
[44] Jordi Ros-Giralt and Wei K Tsai. 2010. A lexicographic optimization framework to the flow control problem. IEEE

Transactions on Information Theory 56, 6 (2010), 2875–2886.

[45] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Changhoon Kim, Arvind Krishnamurthy, Jacob Nelson, and

Simon Peter. 2017. Evaluating the Power of Flexible Packet Processing for Network Resource Allocation. In Proceedings
of the 14th USENIX Conference on Networked Systems Design and Implementation (NSDI’17). USENIX Association,

Berkeley, CA, USA, 67–82. http://dl.acm.org/citation.cfm?id=3154630.3154637

[46] Fabian Skivée and Guy Leduc. 2004. A distributed algorithm for weighted max-min fairness in MPLS networks. In

International Conference on Telecommunications. Springer, 644–653. build on hou to reduce rm cells and use faster

update architecture to improve convergence time by a factor of 2 or 3 depending on precision, asynchronous, needs

per-flow state, proactive.

[47] T. Voice and G. Raina. 2009. Stability Analysis of a Max-Min Fair Rate Control Protocol (RCP) in a Small Buffer Regime.

IEEE Trans. Automat. Control 54, 8 (Aug 2009), 1908–1913. https://doi.org/10.1109/TAC.2009.2022115
[48] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron. 2011. Better Never Than Late: Meeting

Deadlines in Datacenter Networks. In Proceedings of the ACM SIGCOMM 2011 Conference (SIGCOMM ’11). ACM, New

York, NY, USA, 50–61. https://doi.org/10.1145/2018436.2018443

[49] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore. 2014. NetFPGA SUME: Toward 100 Gbps

as research commodity. IEEE Micro 34, 5 (2014), 32–41.

A SUPPLEMENTARY MATERIAL FOR CENTRALIZEDWATERFILLING ALGORITHMS
A.1 Correctness of k-Waterfilling algorithms
It can be shown that all k-Waterfilling algorithms compute max-min fair rates for the flows, and the

fair share rate of a link when it is removed is exactly the max-min fair rate of its bottleneck flows.

We can prove the following property of a k-Waterfilling algorithm:

Lemma 7. [Monotonic Rate Behavior] Let link l be removed in iteration n of a k-Waterfilling
algorithm. The fair share rate computed for link l (line 8 of Algorithm 1) is non-decreasing from
iterations 1 through n.

Proof. Consider any iteration 1 ≤ i < n. There are two possibilities. If no flows are removed

from link l during iteration i , the fair share rate is unchanged. Otherwise, let c,n denote the capacity

and number of flows carried by link l at the beginning of the iteration, and let F denote the set of

flows removed from link l , at the end of the iteration (omitting l subscript from F l) . We will show

that every flow removed from link l is allocated at most the fair share rate, c/n, so that the fair

share rate in the next iteration increases (or stays the same.) A flow removed during the iteration

because of some link k , is allocated no more than the fair share rate of link l , c/n, because links k

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

https://doi.org/10.1016/j.eswa.2017.09.015
https://doi.org/10.1016/j.eswa.2017.09.015
https://doi.org/10.1145/2619239.2626305
https://doi.org/10.1145/2619239.2626305
http://dl.acm.org/citation.cfm?id=3154630.3154665
http://dl.acm.org/citation.cfm?id=3154630.3154637
https://doi.org/10.1109/TAC.2009.2022115
https://doi.org/10.1145/2018436.2018443

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:31

and l are first-degree neighbors. In the next iteration link l ’s capacity, which is reduced by the sum

of allocations of flows in F , is at least c − |F |c/n, while the number of flows is exactly n − |F |.
Hence, the new fair share rate is ≥ (c − |F |c/n)/(n − |F |) = c/n. □

This result will allow us to prove that the algorithm does compute max-min fair rates.

Proof of theorem 2 (k-Waterfilling Correctness). The k-Waterfilling algorithm (Algorithm
1) terminates after a finite number of iterations Nk , and all flows in the network are allocated their
max-min fair rates.
First, we will show that the algorithm terminates after a finite number of iterations, and every

flow is allocated a rate. In each iteration, a link is removed if it has the lowest rate of its neighbors

(as defined in lines 6–9 of Algorithm 1). So at least one link (such as the link with the minimum fair

share rate) is removed in each iteration. The algorithm proceeds until there are no more links with

active flows. Hence, the algorithm terminates after a finite number of iterations, which we call Nk ,

and every flow is allocated a rate.

Next, we will show that the rate allocation is max-min fair. Following definition 1, we will prove

that every flow is bottlenecked at some link. Consider a flow f that is removed in iteration j because
of some link l , and allocated the fair share rate of the link in iteration j, which we denote as rj

(lines 5 and 12). We will show that flow f is bottlenecked at link l : (i) link l is fully utilized, and (ii)

flow f gets the maximum rate of all flows carried by the link, Al⋆. Link l is fully utilized because

when the link is removed, its remaining capacity is shared equally among all flows that it carries

(line 5). Flow f gets the maximum rate because any other flow д that is removed from link l in
a previous iteration i < j, because of some other link, is allocated at most the fair share rate of

link l in iteration i , ri , because link l and the other link are first-degree neighbors (they share д)
and the other link is removed (lines 9 and 12); and the fair share rate of link l is non-decreasing
from iteration i to j, ri ≤ rj (Lemma 7), Hence, flow f , removed because of link l in iteration j, is
allocated the maximum rate of all flows carried by link l . □

The following lemma shows that in the 2-Waterfilling algorithm, for any link, flows in E∗ are
removed strictly before flows in B∗, and when a flow in E∗ removed, it is allocated strictly less than

the link’s fair share rate at the time.

Lemma 8. [E∗ Flows Removed Before B∗] Consider the progression of k-Waterfilling for k ≥ 2 on
(A, c). Let link l be removed in iteration n and let n′ ≤ n denote the first iteration when the link has
the lowest fair share rate in its k=1 neighborhood.
(1) A flow removed from link l in iteration i < n′ is allocated strictly less the link’s fair share rate in

iteration i . As a result, the fair share rate increases in the next iteration. The flow belongs to E∗.
(2) A flow removed from link l in iterations n′ ≤ i is allocated exactly the link’s fair share rate in

iteration i . As a result, the fair share rate stays the same in the next iteration (for i < n.) The
flow belongs to B∗, and the fair share rate equals the max-min fair rate.

Proof. We shall use rl to denote the fair share rate of a link l in iteration i . Let f be a flow

removed from link l in iteration i < n′ because of linkm, and allocated rm . Since link l does not
yet have the smallest rate in its k=1 degree neighborhood, there exists a first-degree neighbor of
link l , linkm′ with a strictly smaller fair share rate. Since linksm andm′ are at most two degrees

apart, and linkm is removed, rm ≤ rm′ < rl . Hence, the allocation of any flow f removed from

link l in iteration i < n′ is strictly less than the fair share rate of link l . If F denotes the set of

flows removed from link l in iteration i , link l ’s capacity in the next iteration is strictly greater

than c − |F | · rl and the number of flows is exactly nl − |F |. Hence, the fair share rate in the next

iteration is > cl−|F | ·rl
nl−|F |

= rl

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:32 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Next, consider iterationn′. If no flows are removed from link l , the the fair share rate is unchanged.
Otherwise, let f be a flow removed from link l in iteration n′ because of linkm, and allocated rm .
Since link l has the lowest rate in its k=1 degree neighborhood, rl ≤ rm . On the other hand, since

linkm is removed, rm ≤ rl . Hence, the allocation of any flow f removed from link l in iteration n′

equals the fair share rate of link l . If F denotes the set of flows removed from l in the iteration, link

l ’s fair share rate in the next iteration is
cl−|F | ·rl

nl
= rl . Recall, from the Monotonic Rate Behavior,

that the fair share rate of l ’s first-degree neighbors is non-decreasing, so that link l still has the
lowest fair share rate in its k=1 neighborhood in the next iteration n′ + 1. Hence, we can repeat the

same analysis for iterations n′ to n to show that any flow removed from link l is allocated its fair

share rate, and the fair share rate is unchanged from one iteration to the next.

Since the fair share rate of link l when it is removed in n equals the max-min fair rate, by theorem

2 (k-Waterfilling Correctness), all flows removed from link l between iterations n′ and n belong to

B∗. □

B SUPPLEMENTARY MATERIAL FOR Fair

B.1 Fair vs Existing Work
There are three differences between Fair and the distributed algorithm called d-CPG described by

Ros-Giralt et al. (see Figures 1–4 in Chapter IV of [42]). First, the “limit rate” calculation in Fair and
d-CPG have different implementations albeit the results are the same. Second, the “bottleneck rate”

calculation in Fair is slightly different from d-CPG–when a link l computes a bottleneck rate for a

flow f , it temporarily assumes that the flow is not limited. Without this change, the bottleneck rate

calculation in d-CPG (“ComputeAR()” procedure in Figure 8 of [42]) is undefined when the sum of

limit rates is less than the link capacity. Finally, the proof of the CPG algorithm claims that it takes

no more than half a round trip for information about a change in the state of one link to propagate

to another (Proof of theorem 4.1 in [42]), whereas the counter-example in table 7 suggests that

it can take up to 1.5 RTTs. For the Fair algorithm, we assume that it can take up to 2 RTTs (or

rounds) for new information to propagate between links rather than half a round trip. Hence, the

convergence bound of Fair in theorem 3 is four times longer than the convergence bound of d-CPG

as stated in theorem 4.1 in [42].

B.2 Proof of Convergence of Fair
Proof of Theorem 3. With Fair , given a fixed (A, c), and once all flows have been seen at least

once by all their links, every flow converges to its max-min fair allocation in less than or equal to 4N1

rounds, where N1 is the number of iterations that the 1-Waterfilling algorithm takes for (A, c).
Let F and L denote the set of flows and links removed in the first iteration of 1-Waterfilling. We

will show that within four rounds, the flows in F are allocated their max-min rates at all links, and

this is reflected in the limit rates stored at the links.

First, we show that within a round every flow f ∈ F is picks up a bottleneck rate that is at

least x∗f from all its links. Consider linkm on the flow’s path. For any link, including linkm, the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:33

bottleneck rate satisfies:

b =

c −
∑

{д |eд<b }
eд

|{д | eд ≥ b}|
.

b ≥
c − |{д | eд < b}| · b

|{д | eд ≥ b}|
(eд < b).

b ≥
c
n
. (4)

Since link m and the link because of which flow f is removed, call it link l , are first-degree

neighbors, the fair share rate of linkm is at least the fair share rate of link l , which is exactly the

allocation of flow f , c/n ≥ x∗f .
By the end of the second round, the limit rate of all flows at every link l ∈ L is at least cl/nl ,

because any flow that the link carries is in F , and the flow gets a bottleneck rate of at least

x∗f = cl/nl from all links on its path. If all limit rates are at least c/n, the bottleneck rate at link l

can be no more than c/n:

b =

c −
∑

{д |eд<b }
eд

|{д | eд ≥ b}|
.

b ≤
c − |{д | eд < b}| · c/n
|{д | eд ≥ b}|

(eд ≥ c/n).

b ≤
c
n
. (5)

Equations (4) and (5). imply that the bottleneck rate at link l ∈ L is exactly cl/nl . Hence, in the

third round, flows in F pick up their local max-min rate from links in L, and they are allocated

this rate by the remaining links by the fourth round. Next we remove flows in F and links in L

and repeat the same analysis for the reduced network, which consists of the remaining flows and

links. Eventually all flows are updated correctly within 4N1 rounds.

It is justified to repeat the analysis in the reduced network because the updates (bottleneck rate

calculation) for the remaining flows are identical in the original and reduced network.

□

C SUPPLEMENTARY MATERIAL FOR S-PERC
C.1 Good Rate Propagation Property

Proof of Lemma 5 (Good Rate Propagation). The bottleneck rate propagated by a link is at
least c/n, the fair share rate of the link, irrespective of the limit rates of the flows seen at the link.

Note that the statement is well-defined for every update, we say that the propagated bottleneck
rate is∞ when the ignore bit is set and b otherwise. Consider an update of flow f at link l . We will

show that the bottleneck rate propagated by the link is at least c/n.
If MaxE ≥ c/n, we are done, since if the bottleneck rate is propagated, it satisfies b > MaxE,

which is at least c/n. Hence, we consider the case whereMaxE < c/n. We show that the bottleneck

rate is at least c/n:

b =
c − SumE

NumB
=

c −
∑

f ∈E xf
|B |

≥
c − |E | · c/n
|B |

= c/n.

Here, we used the fact thatMaxE is an upper bound to allocations of flows in E. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:34 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Table 7. An example sequence of updates with d-CPG [43] which takes 1.5RTTs for new information to
propagate from link 1 to link 2 via the control packet of their shared flow 2.

Time

(RTTs)

Control Packet

at Link 1

Control Packet

at Link 2

Notes

0.00

Flow 1 (fwd.)

UB=∞
ER=10Gb/s

Flow 1 picks up an explicit

rate (ER) 10 Gb/s from

link 1 with a control packet

in the forward direction.

0.01

Flow 2 (fwd.)

UB=∞
ER=10Gb/s

Link state at link 1

changes: number of

flows increases from

1 to 2.

0.50

Flow 1 (fwd.)

UB=10Gb/s
ER=8Gb/s

Link 2 learns about the old

state at link 1: flow 1

is limited to upstream

bandwidth (UB) 10 Gb/s .

0.51

Flow 1 (rvs.)

DB=∞
ER=8Gb/s

0.99

Flow 1 (rvs.)

DB=8Gb/s
ER=5Gb/s

Flow 1 picks up a new

explicit rate (ER) 5 Gb/s

from link 1 with a control

packet in the reverse direction.

1.00

Flow 1 (fwd.)

UB=∞
ER=5Gb/s

Flow 1 picks up a new

explicit rate (ER) 5 Gb/s

from link 1 with a control

packet in the forward direction.

1.50

Flow 1 (fwd.)

UB=5 Gb/s
ER=5 Gb/s

Link 2 learns about the new

state at link 1: flow 1

is limited to upstream

bandwidth (UB) 5 Gb/s .

Link	1	
10	Gb/s	

Link	2	
8	Gb/s	

d-CPG counter example setup.

C.2 Properties of Bottleneck Rate Calculation
Proof of Lemma 6 (Local Bottleneck Rate Property). Suppose limit rates at a link are at

least c/n from time T , then the bottleneck rate computed by the link equals c/n by time T + 2 · round .
If on the other hand, limit rates are bounded below by a smaller value emin < c/n, the bottleneck rate
strictly exceeds emin by time T + 2 · round .
Case 1: Assume that limit rates satisfy e ≥ c/n from timeT . We will show that for all updates from

time T + 2 · round ,8 the bottleneck rate satisfies b = c/n.

8
Note that the variable round denotes the duration of a round in seconds. Thus T + 2 · round refers to the time 2 rounds

after time T .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:35

(1) All flows are seen at the link between times T and T + 1 · round with limit rates at least c/n.
They are either classified into B, or classified into E and allocated at least c/n. Hence, from
timeT + 1 · round , the control packet carries either s = B or x ≥ c/n, and since the link state,

SumE and NumB, reflects the control packet state of the link’s flows, the bottleneck rate in

any update satisfies b ≤ c/n:

b =
c − SumE

NumB
=

c −
∑

f ∈E xf
|B |

≤
c − |E | · c/n
|B |

= c/n.

(2) All flows are seen at the link between timesT + 1 · round andT + 2 · round with b ≤ c/n ≤ e ,
and classified into B. Hence, from time T + 2 · round , the control packet carries s = B, and

the bottleneck rate in any update satisfies b = c/n because SumE = 0 and NumB = n.
Note that the last time a flow is classified into E with a limit rate at least c/n must be before time

T + 1 · round , since b ≤ c/n after.

Case 2: Assume that limit rates satisfy e ≥ emin , and we are only given that emin < c/n. We will

show that for all updates from time T + 2 · round , the bottleneck rate satisfies b > emin .

(1) All flows are seen at the link between times T and T + 1 · round with limit rates at least emin ,

and either classified into B or classified into E and allocated at least emin .

(2) First we show that the link state following some update between timesT + 1 andT + 2 · round
satisfies:

c − SumE > emin · NumB.

Consider the first time after T + 1 · round that control packets of all flows are seen at the

link. If b ≤ e in all updates, then following the last update the link state satisfies NumB = n
and SumE = 0, so that (c − SumE)/NumB = c/n > emin . On the other hand, it is possible

that during some update, a flow is moved to E because b = (c − SumE)/NumB > e , where
SumE and NumB represent the values used to compute b (line 9 of Algorithm 4). Since the

flow is moved to E, the new values of SumE and NumB at the link following the update are

SumE + e and NumB − 1. Now notice that:

c − (SumE + e) > NumB · e − e,

= e · (NumB − 1),

≥ emin · (NumB − 1).

Here, we have used the fact (c − SumE)/NumB > e in the beginning, which follows from the

flow’s update.

(3) Next, we show that after T + 1 · round , if the link state satisfies c − SumE > NumB · emin
before an update, it satisfies the inequality after the update as well. If flow is moved to E
during the update (b > e), we can follow the same reasoning as in point (2). Otherwise, if

b ≤ e and the flow was previously in E, then the new values of SumE and NumB at the link

are SumE − x and NumB + 1, where x is the old rate allocated to the flow. The old allocation

is at least emin , since it was made within the last round, and limit rates are at least emin from

time T . Since c − SumE > NumB · emin and x ≥ emin , we have:

c − (SumE − x) > NumB · emin + x,
≥ NumB · emin + emin ,

= emin · (NumB + 1).

(4) Finally, we show that c − SumE > NumB · emin implies that the bottleneck rate during an

update satisfies b > emin . If the flow being updated was previously in B, that is s = B before

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:36 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

the update, then it immediately follows b = (c − SumE)/NumB > emin . Otherwise, letting x
denote the old rate allocated to the flow before the update, we have:

b =
c − (SumE − x)
NumB + 1

>
NumB · emin + emin

NumB + 1
= emin .

□

The following fact also trivially follows from the proof (for Case 1), and will be useful to

understand the behavior ofMaxE later in the convergence proof of s-PERC.

Corollary 8.1. Suppose limit rates at a link are at least c/n from time T , then the last control packet,
for which a flow was classified into E with limit rate at least c/n, must be seen before timeT +1 ·round .

C.3 Approximating the Maximum E Allocation
In the s-PERC algorithm, every link l starts to reset theirMaxE andMaxE ′ independently at some

time, and thereafter resetsMaxE ′ andMaxE after every round seconds according to Algorithm 5.

The variableMaxE satisfies two key properties:

Lemma 9. Suppose link l starts resettingMaxE andMaxE ′ at timeT . From timeT +1·round onward,
the variableMaxE is at least the maximum allocation of any flow in E, that is,MaxE ≥ maxf ∈E xf .

Proof.

(1) At time T + 1 · round , right before the reset,MaxE ′ is at least the maximum rate allocated to

any E flow:MaxE ′ ≥ maxf ∈E xf . Therefore, immediately after the reset,MaxE ≥ maxf ∈E xf .
(2) During the next round, until time T + 2 · round , following any update in which a flow д is

classified as E and is allocated rate xд , the link updatesMaxE to max(MaxE,xд) (line 22 in
Algorithm 4). Therefore, after every update:MaxE ≥ max(maxf ∈E\д xf ,xд) =maxf ∈Exf .

(3) At time T + 2 · round , once again,MaxE ′ ≥ maxf ∈E xf right before the reset, andMaxE ≥
maxf ∈E xf immediately after the reset. Hence, we have the same argument from time T + 2 ·
round onward by induction.

Therefore, we have established that from time T + 1 · round onward, we always haveMaxE ≥
maxf ∈E xf .

□

Lemma 10. If the maximum allocation of any E flow at the link stabilizes at time T , then MaxE
reflects this value by time T + 2 · round .

Proof. Let the first reset after time T occur at time R.

(1) At time R + 1 · round , right before the reset, MaxE ′ = maxf ∈E xf . Therefore, immediately

after the reset,MaxE = maxf ∈E xf .
(2) During the next round, until time R + 2 · round ,MaxE = maxf ∈E xf after any update, since

the maximum allocation of E flows does not change from time T onward.

(3) At time R + 2 · round , once again, MaxE ′ = maxf ∈E xf right before the reset, and MaxE =
maxf ∈E xf immediately after the reset. Hence, we have the same argument for timeR+2·round
by induction.

We have established that from time R + 1 · round onward, we always haveMaxE = maxf ∈E xf .
The result follows by observing that R ≤ T +1 ·round , since a reset occurs every round seconds. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:37

C.4 Proof of Convergence of s-PERC
Proof of Theorem 4. With s-PERC, given a fixed (A, c), once all flows have been seen at their

links, every flow converges to its max-min fair rate in less than or equal to 6N2 rounds, where N2 is
the number of iterations that 2-Waterfilling takes for (A, c).

Let T denote the first time at which all flows have been seen at their links. Let F and L denote

the set of flows and links removed in the first iteration of 2-Waterfilling. We will show that by time

T + 6 · round , the flows in F are allocated their max-min rates, and classified correctly into B or E
at all links, and this is reflected in the bottleneck state and allocations stored in the control packets,

and hence in the aggregate state at the links.

Let f ∈ F be removed because of some link k ∈ L. We will use “link l” to refer to other links

on the path of flow f , which have fair share rates equal to link k or greater (since link k ∈ L, by
definition, has the lowest fair share rate). We will consider both cases.

Step 1. From time T + 1 · round : (1) limit rates of all flows at link k are at least ck/nk ; (2) the limit
rates of all flows at any other link l on the path of flow f are also at least ck/nk .

Proof. First, let’s consider link k . Since all flows have been seen at least once by all their links by

timeT , they pick up a bottleneck rate from all their links and by Lemma 5 (Good Rate Propagation),

limit rates of all flows at link k satisfy e ≥ ck/nk by time T + 1 · round . This property follows from

Lemma 5 because the limit rate of any flow at link k is the smallest bottleneck rate propagated

by any other link on the flow’s path, which is a first-degree neighbor of link k . Since link k has

the smallest fair share of first-degree neighbors, the limit rate of the flow is at least the fair share

rate of link k . A similar argument shows that the limit rates of all flows at any other link l on the

path of flow f are at least ck/nk . The limit rate of any flow at link l is a bottleneck rate propagated

by a second-degree neighbor of link k . Since link k has the smallest fair share of second-degree

neighbors, the limit rate of a flow at link l is at least the fair share rate of link k . □

Step 2. From time T + 3 · round : (1) the bottleneck rate at link k equals the fair share rate of link k ,
ck/nk ; (2) the bottleneck rate at any other link l on the path of flow f with a strictly greater fair share
than ck/nk is strictly greater than ck/nk . If link l has a fair share rate equal to ck/nk , its bottleneck
rate equals ck/nk .

Proof. This follows from Lemma 6 (Local Bottleneck Rate Property), and the lower bound of

ck/nk on the limit rates of all flows at link k and at other links l on the path of flow f from time

T + 1 · round . □

Step 3. From time T + 3 · round : (1) flow f is classified correctly into B at link k and allocated the
max-min rate ck/nk ; (2) further, if any link l on flow f ’s path has a fair share equal to ck/nk , flow f
is also classified correctly into B and allocated ck/nk at that link.

Proof. From time T + 3 · round , the bottleneck rate computed for flow f is exactly ck/nk at

links that have fair share rates equal to ck/nk (including link k), while the limit rate is at least

ck/nk . So flow f is classified into B at such links and allocated ck/nk . This is the max-min rate for

flow f because of theorem 2 (k-Waterfilling Correctness). This is the correct classification because

the links have the lowest fair share rate in their k = 1 neighborhood, and by lemma 8 (E∗ Flows
Removed Before B∗), the rate equals their max-min fair rate. □

Step 4. From T + 4 · round , the bottleneck rate from link k is propagated as is (ik = 0) to other links l
on the path of flow f .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:38 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Proof. Given that limit rates at link k are at least ck/nk fromT +1 ·round , all flows are classified
into B at link k from time T + 2 · round , and the last control packet, for which a flow is classified

into E, must be seen at the link before time T + 2 · round (Corollary 8.1 of Lemma 6). SoMaxE at

link k drops to 0, and the bottleneck rate is propagated to other links from time T + 4 · round , that
is, the updates of all flows (including f) at link k satisfyMaxE < b = x∗f . From time T + 4 · round ,

the control packets of all flows (including f) carries ik = 0 and bk = ck/nk , indicating that the

correct bottleneck rate is propagated by link k . □

Step 5. From time T + 5 · round , at any link l with a higher fair share than link k , flow f ’s limit rate
is exactly ck/nk , while the bottleneck rate computed by link l is strictly greater than ck/nk . So the
flow is allocated x∗f = ck/nk , and classified correctly into E at the link.

Proof. This follows from the fact that link k propagates its bottleneck rate of ck/nk from time

T + 4 · round (Step 4), and the fact that bottleneck rate at link l strictly exceeds ck/nk (Step 2).

Link l ’s decision to classify flow f into E is correct, because the max-min rate of a link is at least

the fair share rate of the link, and the fair share rate is higher than ck/nk . □

Hence, within six rounds of timeT , all flows (like flow f) in F are allocated their max-min rates,

and classified correctly into B or E at all their links, and this is reflected in the bottleneck state and

allocations stored in the control packets, and hence in the aggregate state at the links (since SumE
and NumB can be expressed in terms of the control packet state.)

From time T + 6 · round , we can ignore F and L and consider the reduced network, comprising

the remaining flows and their links, where for each link, we reduce the original capacity by the

max-min fair allocations of any removed flows. The s-PERC algorithm updates in the reduced

network for the remaining flows are identical to the updates in the original network.

We can repeat the same analysis to show that flows removed in the first iteration of the 2-

Waterfilling algorithm for the reduced network are updated correctly at all their links within an

additional 6 rounds. By induction, all flows removed in iterations one through N2, are correctly

updated, and their control packets carry the correct allocations and bottleneck state for all their

links by time T + 6 · N2 · round . □

C.4.1 Control Packet Updates in the Reduced Network. We explain why the updates of flows at a

link l in the reduced network are identical to their updates in the original network. We use the

prime symbol (
′
) to refer to variables in the the reduced network. We use the notation Fl to refer to

link l ’s flows that are removed in the first iteration of the 2-Waterfilling algorithm in the original

network.

(1) First, consider the bottleneck rate calculation. There are two cases, either Fl ⊂ B∗ or they
Fl ⊂ E∗. In the first case, we have the result, from analyzing the original network, that

all flows of link l , Al⋆ are permanently classified into B after T + 6 · round . Given this, the

bottleneck rate calculation in the reduced network is equal to that in the original network:

b ′ = c′−SumE′
NumB′ =

c′
n′ =

c−|Fl | ·c/n
n−|Fl |

= c
n = b. In the second case, where Fl ⊂ E∗, we have the

result, from analyzing the original network, that all flows in Fl are permanently classified into

E after T + 6 · round . Given this, the bottleneck rate calculations are equal: b ′ = c′−SumE′
NumB′ =

c′−
∑
E∩A′l⋆

x

|B∩A′l⋆ |
=

c−
∑
E∩Al⋆

x
|B∩Al⋆ |

= b.

(2) Next consider the rate propagation, the bottleneck rate is propagated when b ≥ MaxE. We

can show that the value ofMaxE during updates of in the reduced network, for flows in the
reduced network, is exactly the same as in the original network. We’ll consider a link l for
which the flows removed in the original network Fl ⊂ E∗. We have the result from analyzing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:39

Table 8. Outline of steps in the proof of convergence of the s-PERC algorithm. We assume we are given a
network as in Figure 5 where link k has the lowest fair share rate of first- and second-degree neighbors like
link l and link j respectively.

Time

Updates of

flow f
at link k

Updates of

flows f ,д
at link l
(1st-deg.)

Updates of

flow д
at link j

(2nd-deg.)

T
b ≥ ck/nk
or i = 1

b ≥ ck/nk
or i = 1

T + 1 · round e ≥ ck/nk e ≥ ck/nk
T + 2 · round

T + 3 · round
b = ck/nk
s = B

x = b = ck/nk
b > ck/nk

T + 4 · round i = 0

T + 5 · round

e = ck/nk
s = E

x = e = ck/nk
(for flow f)

the original network, that flows in Fl converge to their correct limit rates, x∗, at link l after
T + 6 · round , while the remaining flows have limit rates that are at least x∗. Hence, whenever
MaxE orMaxE ′ is updated by a flow in the reduced network, its value equals the value in

the original network.

D SUPPLEMENTARY MATERIAL FOR MAKING S-PERC PRACTICAL
D.1 Flow Completion Times with Dynamic Data Center Workloads (continued)
Here, we include the results from Flow Completion Time experiments at 80% load for search (Figure

12) and data-mining (Figure 13) workloads. The results are similar to results at 60% load.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:40 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

0 1 2 3 4 5 10 15
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00

CD
F

0-1% of bytes, 53% of flows

0 10 150 10 20 30
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00

CD
F

1-33% of bytes, 36% of flows

0 10 150 10 20 30
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00

CD
F

33-66% of bytes, 8% of flows

0 10 20 30 40
FCT (norm. by min. FCT)

0.00

0.25

0.50

0.75

1.00
CD

F
66-100% of bytes, 3% of flows

s-PERC (basic)
s-PERC (short)
Ideal Max-Min
p-Fabric
RCP

Fig. 12. FCTs for search workload at 80% load. Settings in table 6. Note bin 4 has < 30 samples for the 95th
percentile and above (horizontal red line.)

0 1 2 3 4 5
FCT (norm. by min. FCT)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

0-1% of bytes, 94% of flows

0 1 2 3 4 5 10
FCT (norm. by min. FCT)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

1-100% of bytes, 6% of flows

s-PERC (basic)
s-PERC (short)
RCP
Ideal Max-Min
p-Fabric

Fig. 13. FCTs for data-mining workload at 80% load. Settings in Table 6.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

A Distributed Algorithm to Calculate Max-Min Fair Rates Without Per-Flow State 21:41

D.2 Pseudocode for s-PERC⋆

See algorithms 6 and 7 for a description of the s-PERC
⋆
algorithm running at the links. In order

to handle control packet drops, the basic s-PERC algorithm has been enhanced with “shadow”

variables (a term used by [15]) SumE ′ and NumB′ corresponding to the original variables SumE and

NumB, respectively. The shadow variables are updated along with the original variables whenever

a control packet is received (algorithm 6), and they are synced to the original variables and reset at

the end of each round at the link (algorithm 7.) See table 9 for an example of an initial s-PERC
⋆

control packet sent by an end-host. The control packet carries a new per-link variable, t, which is a

vector of the latest round numbers seen at each link on the flow’s path.

Table 9. s-PERC⋆ initial control packet for 10kB flow fW after it has left the end-host, carrying per-link
information. First row corresponds to virtual link l0, carrying size information relevant for short flows.

Link Bottleneck State (s) Bottleneck ignore round

Allocation (x) rate (b) (t)

l0 (E @ 0) 10 MB 0 (0)

1 RTT

l30 E @ 0 0 1 0

l12 E @ 0 0 1 0

Txctr l : ∞
FIN : 0

Algorithm 7 Timeout action at link l for s-PERC, every round

1: MaxE ← MaxE′; MaxE′ ← 0

2: SumE ← SumE′; SumE′ ← 0

3: NumB ← NumB′; NumB′ ← 0

4: T ← T + 1

Received February 2019; revised March 2019; accepted April 2019

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

21:42 L. Jose, S. Ibanez, M. Alizadeh, and N. McKeown

Algorithm 6 s-PERC
⋆
control packet processing at link l showing additional steps for robustness

to drops. For simplicity, we omit steps to calculate rate-limits. See also Algorithm 7.

1: b, x, s : vector of bottleneck, allocated rates, bottleneck states in packet (initially,∞, 0, E, respectively.)

2: i: vector of ignore bits in packet (initially, 1.)

3: t : vector of round numbers in packet (initially, 0.)

4: SumE , SumE′ : sum of limit rates of E flows since last round, and in this round.

5: NumB , NumB′: number of B flows at link since last round, and in this round.

6: MaxE , MaxE′: max. allocated rate of flows classified into E since last round, and in this round.

7: T : round number at this link, initially 1.

8: if s[l] = E then ▷ Assume flow is not limited, for bottleneck rate calculation

9: s[l] ← B

10: SumE ← SumE − x
11: if t[l] = T then SumE′ ← SumE′ − x ▷ Update if flow prev. seen in round.

12: NumB ← NumB + 1
13: if t[l] = T then NumB′ ← NumB′ + 1
14: else if t[l] , T then
15: NumB′ ← NumB′ + 1 ▷ Update if flow not seen in round yet.

16: b ← (c − SumE)/NumB
17: foreach link j :
18: if i[j] = 0 then p[j] ← b[j] else p[j] ← ∞ ▷ Propagated rates

19: p[l] ← ∞ ▷ Assume the link’s own propagated rate is∞

20: e ← min p
21: x ← min (b, e)
22: b[l] ← b, x[l] ← x ▷ Save variables to packet.

23: if b < MaxE then i[l] ← 1 else i[l] ← 0 ▷ Indicate if rate b[l] should be ignored.

24: if flow is leaving then
25: NumB ← NumB − 1, NumB′ ← NumB′ − 1 ▷ Remove flow f
26: else if e < b then
27: s[l] ← E

28: SumE ← SumE + x ; SumE′ ← SumE′ + x .
29: NumB ← NumB − 1; NumB′ ← NumB′ − 1.
30: MaxE ← max(x, MaxE); MaxE′ ← max(x, MaxE′).
31: if t[l] , T then t[l] = T ▷ Update packet to say flow has been seen in this round.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 21. Publication date: June 2019.

	Abstract
	1 Introduction
	2 Definitions
	2.1 Max-Min Fairness

	3 Proactive (PERC) Algorithms
	3.1 k-Waterfilling algorithms

	4 Fair: a Max-Min PERC Algorithm with Per-Flow State
	4.1 The local max-min fair rate
	4.2 The Fair Algorithm in Action
	4.3 Convergence of the Fair Algorithm

	5 n-PERC: A Naive PERC Algorithm Without Per-Flow State
	5.1 The n-PERC Algorithm in Action
	5.2 Transient Problems With n-PERC

	6 s-PERC: a Stateless Algorithm with Known Convergence Time
	6.1 s-PERC in Action
	6.2 Convergence of the s-PERC algorithm

	7 Making s-PERC Practical
	7.1 Design and Implementation of s-PERC*

	8 Evaluation
	8.1 Numerical Simulations
	8.2 Packet-level Simulations
	8.3 Hardware Prototype and Evaluation

	9 Related work
	10 Conclusion
	Acknowledgments
	References
	A Supplementary Material for Centralized Waterfilling Algorithms
	A.1 Correctness of k-Waterfilling algorithms

	B Supplementary material for Fair
	B.1 Fair vs Existing Work
	B.2 Proof of Convergence of Fair

	C Supplementary Material for s-PERC
	C.1 Good Rate Propagation Property
	C.2 Properties of Bottleneck Rate Calculation
	C.3 Approximating the Maximum E Allocation
	C.4 Proof of Convergence of s-PERC

	D Supplementary Material for Making s-PERC practical
	D.1 Flow Completion Times with Dynamic Data Center Workloads (continued)
	D.2 Pseudocode for s-PERC

